Today.

Last time:

Shared (and sort of kept) secrets.

Today: Errors

Tolerate Loss: erasure codes.

Tolerate corruption!

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

Non-zero line (degree 1 polynomial) can intersect y = 0 at only one x.

A parabola (degree 2), can intersect y = 0 at only two x's.

Proof:

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Must prove Roots fact.

In general..

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Solve...

$$\begin{array}{rclcrcl} a_{k-1} x_1^{k-1} + \cdots + a_0 & \equiv & y_1 \pmod{p} \\ a_{k-1} x_2^{k-1} + \cdots + a_0 & \equiv & y_2 \pmod{p} \\ & \vdots & \vdots & \vdots \\ a_{k-1} x_k^{k-1} + \cdots + a_0 & \equiv & y_k \pmod{p} \end{array}$$

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains d+1 pts.

Polynomial Division.

П

Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$4x^2-3x+2 \equiv (x-3)(4x+4)+4 \pmod{5}$$

In general, divide P(x) by (x - a) gives Q(x) and remainder r.

That is,
$$P(x) = (x - a)Q(x) + r$$

Proof sketches.

Property 2 A polynomial: $P(x) = a_d x^d + \cdots + a_0$ has d+1 coefficients. Any set of d+1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.

Degree d, $\Delta_i(x)$ polynomials.

factors of $(x - x_j)$ to zero out at $x_j \neq x_i$. Multiply by zero. My love is won.

Combine.

Uniqueness:

Property 1 A non-zero degree *d* polynomial has at most *d* roots.

Factoring:
$$P(x)$$
 with roots $r_1, ..., r_d$
 $\Rightarrow P(x) = c(x - r_0)(x - r_1)...(x - r_d).$

Love me some contradiction!

Two polynomials: P(x), Q(x), P(x) - Q(x) has too many roots.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

P(x) = (x - a)Q(x).

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

 $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

П

d+1 roots implies degree is at least d+1.

Roots fact: Any degree *d* polynomial has at most *d* roots.

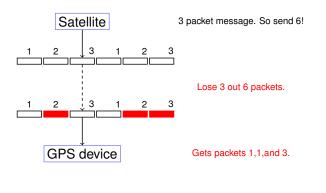
Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.


Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

In the rationals, the precision blows up, where in modular arithmetic, it does not.

Erasure Codes.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret *s* ∈ $\{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any k knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Secrecy: Any k-1 knows nothing. Knowing $\leq k-1$ pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Solution Idea.

n packet message, channel that loses k packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any *n* point values allow reconstruction of degree n-1 polynomial.

Alright!!!!!!

Use polynomials.

Secret Sharing.

n people, k is enough.

- (A) The modulus needs to be at least n+1.
- (B) The modulus needs to be at least k.
- (C) Use degree *k* polynomial, hand out *n* points.
- (D) Use degree *n* polynomial, hand out *k* points.
- (E) Use degree k-1 polynomial, hand out n points.
- (F) The modulus needs to be at least 2^s , where s is value of secret.
- (G) The modulus needs to be at least 2^s , where s is size of secret.

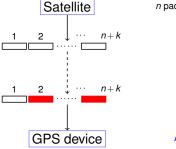
(A), (B), (E), (F)

The Scheme

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n+k packets and recover message?


A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = m_0, m_1, \dots, m_{n-1} .

- 1. Choose prime $p \approx 2^b$ for packet size b.
- 2. $P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$.
- 3. Send P(1), ..., P(n+k).

Any n of the n+k packets gives polynomial ...and message!

n packet message. So send n+k!

Lose *k* packets.

Any *n* packets is enough!

n packet message.

Optimal.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

(""" = "" (""" ")

$$6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$$

$$a_1 = 2a_0$$
. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$

$$P(x) = 2x^2 + 4x + 2$$

$$P(1) = 1$$
, $P(2) = 4$, and $P(3) = 4$

Send

Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain "x-values".

Information Theory.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.

Coding: Each packet has size 1/n of the whole message.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)

Reconstruct?

Format: (i, R(i)).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

$$P(x) = 2x^2 + 4x + 2$$

Message?
$$P(1) = 1, P(2) = 4, P(3) = 4.$$

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.

Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

$$P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why?
$$(0, P(0)) = (5, P(5)) \pmod{5}$$

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?

Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

Larger than 8 and prime!

The other constraint: arithmetic system can represent 0, 1, 2, 3, 4.

Send *n* packets *b*-bit packets, with *k* errors.

Modulus should be larger than n+k and also larger than 2^b .

Polynomials.

- ...give Secret Sharing.
- ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Properties: proof.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

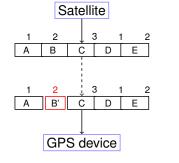
- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
- Q(x) agrees with R(i), n+k times.
- P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k. H Holes.


Only two polynomials agree with point. \implies At most 2 pigeons

per hole.

Points contained by both $: \ge n$. $\ge P - H$ Collisions.

 $\implies Q(i) = P(i)$ at *n* points. $\implies Q(x) = P(x)$.

Error Correction

3 packet message. Send 5.

Corrupts 1 packets.

Example.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has

P(1) = 3, P(2) = 0, P(3) = 6 modulo 7.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

The Scheme.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - $P(1) = m_1, ..., P(n) = m_n.$
 - ► Comment: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Recieve values $R(1), \dots, R(n+2k)$.

Properties:

- (1) P(i) = R(i) for at least n+k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Slow solution.

Brute Force:

For each subset of n+k points

Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. unique degree n-1 polynomial Q(x) that fits $\geq n$ of them
 - 2. and where Q(x) is consistent with n+k points

$$\implies P(x) = Q(x).$$

Reconstructs P(x) and only P(x)!!

Example.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

$$\begin{array}{ccccc} p_2 + p_1 + p_0 & \equiv & 3 \pmod{7} \\ 4p_2 + 2p_1 + p_0 & \equiv & 1 \pmod{7} \\ 2p_2 + 3p_1 + p_0 & \equiv & 6 \pmod{7} \\ 2p_2 + 4p_1 + p_0 & \equiv & 0 \pmod{7} \\ 4p_2 + 5p_1 + p_0 & \equiv & 3 \pmod{7} \end{array}$$

Assume point 1 is wrong and solve...no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Where oh where can my bad packets be?

$$\begin{array}{ccccc} E(1)(p_{n-1}+\cdots p_0) & \equiv & R(1)E(1) \pmod{p} \\ \mathbf{0} \times E(2)(p_{n-1}2^{n-1}+\cdots p_0) & \equiv & R(2)E(2) \pmod{p} \\ & & \vdots \\ E(m)(p_{n-1}(m)^{n-1}+\cdots p_0) & \equiv & R(n+2k)E(m) \pmod{p} \end{array}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. Zero times anything is zero!!!!! My love is won.

All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2)...(x - e_k).$

E(i) = 0 if and only if $e_i = i$ for some i

Multiply equations by $E(\cdot)$. (Above E(x) = (x-2).)

All equations satisfied!!

In general..

$$P(x) = \rho_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m=n+2k)$.
$$\begin{aligned} & p_{n-1} + \cdots p_0 &\equiv R(1) \pmod{p} \\ & p_{n-1}2^{n-1} + \cdots p_0 &\equiv R(2) \pmod{p} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Example.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

4 unknowns $(p_0, p_1, p_2 \text{ and } e)$, 5 nonlinear equations.

Ditty...

Oh where, Oh where has my little dog gone? Oh where, oh where can he be With his ears cut short

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where have my packets gone.. wrong? Oh where, oh where do they not fit.

With the polynomial well put But the channel a bit wrong Where, oh where do we look?

..turn their heads each day,

$$E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1}+\cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1}+\cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let
$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$$
.

Equations:

$$Q(i) = R(i)E(i)$$
.

and linear in a_i and coefficients of E(x)!

Finding Q(x) and E(x)?

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

 \triangleright Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 $\implies n+k$ (unknown) coefficients.

Number of unknown coefficients: n+2k.

Example: finishing up.

Except at x = 2? Hole there?

Solving for Q(x) and E(x)...and P(x)

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$\begin{array}{rcl} a_{n+k-1} + \ldots a_0 & \equiv & R(1)(1+b_{k-1}\cdots b_0) \pmod{p} \\ a_{n+k-1}(2)^{n+k-1} + \ldots a_0 & \equiv & R(2)((2)^k + b_{k-1}(2)^{k-1}\cdots b_0) \pmod{p} \\ & \vdots \\ a_{n+k-1}(m)^{n+k-1} + \ldots a_0 & \equiv & R(m)((m)^k + b_{k-1}(m)^{k-1}\cdots b_0) \pmod{p} \end{array}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find
$$P(x) = Q(x)/E(x)$$
.

Error Correction: Berlekamp-Welsh

Message: m_1, \ldots, m_n . **Sender:**

- 1. Form degree n-1 polynomial P(x) where $P(i)=m_i$.
- 2. Send P(1), ..., P(n+2k).

Receiver:

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i)=E(i)R(i) to find Q(x)=E(x)P(x) and E(x).
- 3. Compute P(x) = Q(x)/E(x).
- 4. Compute P(1),...,P(n).

Example.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

$$a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$$

$$6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$$

$$a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$$

$$6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$$

$$a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5 \text{ and } b_0 = 2.$$

$$Q(x) = x^3 + 6x^2 + 6x + 5.$$

$$E(x) = x - 2.$$

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.

Check all values? Sure.

Efficiency? Sure. Only n+2k values. See where it is 0.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure? **Existence:** there is a P(x) and E(x) that satisfy equations.

Yaay!!

Berlekamp-Welsh algorithm decodes correctly when *k* errors!

Unique solution for P(x)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x)$$
 on $n+2k$ values of x . (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1

and agree on n+2k points

E(x) and E'(x) have at most k zeros each.

Can cross divide at *n* points.

 $\Rightarrow \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n-1 \Rightarrow$ Same polynomial!

Poll

Say you sent a message of length 4, encoded as P(x) where one sends packets P(1),...P(8).

You recieve packets R(1), ... R(8).

Packets 1 and 4 are corrupted.

- (A) $R(1) \neq P(1)$
- (B) The degree of P(x)E(x) = 3 + 2 = 5.
- (C) The degree of E(x) is 2.
- (D) The number of coefficients of P(x) is 4.
- (E) The number of coefficients of P(x)Q(x) is 6.
- (E) is false.
- (A) E(x) = (x-1)(x-4)
- (B) The number of coefficients in E(x) is 2.
- (C) The number of unknown coefficients in E(x) is 2.
- (D) E(x) = (x-1)(x-2)
- (E) $R(4) \neq P(4)$
- (F) The degree of R(x) is 5.
- (A), (C), (E). (F) doesn't type check!

Last bit.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with $\frac{x-2}{y-2}$ at x=2.

Summary. Error Correction.

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

Why?

k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Cool.			
Really Cool!			