
The Barber!

The barber shaves all and only people who do not shave themselves.

(A) Barber not Mark. Barber shaves Mark.
(B) Mark shaves the Barber.
(C) Barber doesn’t shave themself.
(D) Barber shaves themself.

Its all true. It’s all a problem.

Self reference.

Can a program refer to a program?

Can a program refer to itself?

Uh oh....
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Is it actually useful?

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.
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Implementing HALT.

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Run P on I and check!

How long do you wait?

Something about infinity here, maybe?
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Halt does not exist.
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Theorem: There is no program HALT.
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Yes! No!...

What is he talking about?

(A) He is confused.
(B) Diagonalization.
(C) Welch-Berlekamp
(D) Professor is just strange.

(B) and (D) maybe? and maybe (A).

Professor does me some love Welch-Berlekamp though!
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Halt and Turing.
Proof:

Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever
=⇒ then HALTS(Turing, Turing) ̸= halts
=⇒ Turing(Turing) halts.

Contradiction. Program HALT does not exist!
Questions?
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Another view of proof: diagonalization.

Any program is a fixed length string.

Fixed length strings are enumerable.
Program halts or not on any input, which is a string.

P1 P2 P3 · · ·

P1 H H L · · ·
P2 L L H · · ·
P3 L H H · · ·
...

...
...

...
. . .

Halt - diagonal.
Turing - is not Halt.
and is different from every Pi on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.
Halt does not exist!
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Proof play by play.

Assumed HALT(P, I) existed.

What is P? Text.
What is I? Text.

What does it mean to have a program HALT(P, I).
You have Text that is the program HALT(P, I).

Have

Text

that is the program TURING.
Here it is!!
from fancystuff import halt

Turing(P)
1. If HALT(P,P) =“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Turing “diagonalizes” on list of program.
It is not a program!!!!
=⇒ HALT is not a program.

Questions?
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Undecidable problems.

Does a program, P, print “Hello World”?

How? What is P? Text!!!!!!

Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: “ xn +yn = 1?”
Problem is undecidable.

Be careful!

Is there an integer solution to xn +yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations and

always corectly output whether it has an integer solution.
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Fly: blob. Torso becomes striped.

Developed chemical reaction-diffusion networks that break
symmetry.
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Turing: personal.

Tragic ending...

▶ Arrested as a homosexual, (not particularly closeted)

▶ given choice of prison or (quackish) injections to eliminate sex
drive;

▶ took injections.

▶ lost security clearance...

▶ suffered from depression;

▶ (possibly) suicided with cyanide at age 42 in 1954.
(A bite from the apple....) accident?

▶ British Government apologized (2009) and pardoned (2013).
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Back to technical..

This statement is a lie.

Neither true nor false!

Every person who doesn’t shave themselves is shaved by the barber.

Who shaves the barber?

def Turing(P):
if Halts(P,P): while(true): pass
else:
return

...Text of Halt...

Halt Progam =⇒ Turing Program. (P =⇒ Q)

Turing(“Turing”)? Neither halts nor loops! =⇒ No Turing program.

No Turing Program =⇒ No halt program. (¬Q =⇒ ¬P)

Program is text, so we can pass it to itself,
or refer to self.
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What is the chance that a ball taken from the bag is blue?

Count blue. Count total. Divide.

For now: Counting!

Later: Probability.
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Outline: basics

1. Counting.

2. Tree

3. Rules of Counting

4. Sample with/without replacement where order does/doesn’t
matter.



Probability is soon..but first let’s count.



Count?

How many outcomes possible for k coin tosses?
How many poker hands?
How many handshakes for n people?
How many diagonals in a n sided convex polygon?
How many 10 digit numbers?
How many 10 digit numbers without repetition?
How many ways can I divide up 5 dollars among 3 people?



Using a tree..

How many 3-bit strings?

How many different sequences of three bits from {0,1}?
How would you make one sequence?
How many different ways to do that making?
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0
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0

100

0

101

1

0

110

0

111

1

1

1

8 leaves which is 2×2×2. One leaf for each string.
8 3-bit strings!
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First Rule of Counting: Product Rule

Objects made by choosing from n1, then n2, . . ., then nk
the number of objects is n1 ×n2 · · ·×nk .

n1

×n2

×n3

· · · · · · · · · · · ·
In picture, 2×2×3 = 12!
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Poll

Mark whats corect.

(A) |10 digit numbers|= 1010

(B) |k coin tosses|= 2k

(C) |10 digit numbers|= 9∗109

(D) |n digit base m numbers|= mn

(E) |n digit base m numbers|= (m−1)mn−1

(A) or (C)? (D) or (E)? (B) are correct.
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Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2×2 · · · ×2 = 2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...
10×10 · · · ×10 = 10k

How many n digit base m numbers?

m ways for first, m ways for second, ...
mn

(Is 09, a two digit number?)

If no. Then (m−1)mn−1.
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Functions, polynomials.

How many functions f mapping S to T ?

|T | ways to choose for f (s1), |T | ways to choose for f (s2), ...

....|T ||S|

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ...
...pd+1

p values for first point, p values for second, ...
...pd+1

Questions?
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Permutations.

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... 10∗9∗8 · · · ∗1 = 10!.1

How many different samples of size k from n numbers without
replacement.

n ways for first choice, n−1 ways for second,
n−2 choices for third, ...

... n ∗ (n−1)∗ (n−2) · ∗(n−k +1) = n!
(n−k)! .

How many orderings of n objects are there?
Permutations of n objects.

n ways for first, n−1 ways for second,
n−2 ways for third, ...

... n ∗ (n−1)∗ (n−2) · ∗1 = n!.

1By definition: 0! = 1.
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One-to-One Functions.

How many one-to-one functions from |S| to |S|.
|S| choices for f (s1), |S|−1 choices for f (s2), ...

So total number is |S|× |S|−1 · · ·1 = |S|!
A one-to-one function is a permutation!
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Counting sets..when order doesn’t matter.

How many poker hands?

52×51×50×49×48 ???

Are A,K ,Q,10,J of spades
and 10,J,Q,K ,A of spades the same?
Second Rule of Counting: If order doesn’t matter count ordered
objects and then divide by number of orderings.2

Number of orderings for a poker hand: “5!”

(The “!” means factorial, not Exclamation.)

52×51×50×49×48
5!Can write as...

52!
5!×47!

Generic: ways to choose 5 out of 52 possibilities.

2When each unordered object corresponds equal numbers of ordered
objects.
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Ordered to unordered.

Second Rule of Counting: If order doesn’t matter count ordered
objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.

How many red nodes mapped to one blue node? 3.

How many blue nodes (unordered objects)? 9
3 = 3.

How many poker deals? 52 ·51 ·50 ·49 ·48.

How many poker deals per hand?
Map each deal to ordered deal: 5!

How many poker hands? 52·51·50·49·48
5!

Questions?
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..order doesn’t matter.

Choose 2 out of n?

n× (n−1)

2
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Choose k out of n?
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(n−k)!

×k !

Notation:
(n

k

)
and pronounced “n choose k .”

Familiar? Questions?
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Example: Visualize the proof..

First rule: n1 ×n2 · · ·×n3. Product Rule.
Second rule: when order doesn’t matter divide...

. . .. . .

. . .. . . ∆

3 card Poker deals: 52×51×50 = 52!
49! . First rule.

Poker hands: ∆?
Hand: Q,K ,A.
Deals: Q,K ,A : Q,A,K : K ,A,Q : K ,A,Q : A,K ,Q : A,Q,K .

∆ = 3×2×1 First rule again.
Total: 52!

49!3! Second Rule!

Choose k out of n.
Ordered set: n!

(n−k)! Orderings of one hand? k ! (By first rule!)
=⇒ Total: n!

(n−k)!k ! Second rule.
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Example: Anagram

First rule: n1 ×n2 · · ·×n3. Product Rule.
Second rule: when order doesn’t matter divide...

. . .. . .

. . .. . . ∆

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is ∆?
ANAGRAM
A1NA2GRA3M , A2NA1GRA3M , ...
∆= 3×2×1 = 3! First rule!
=⇒ 7!

3! Second rule!
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=⇒ 7!

3! Second rule!
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Poll

Mark what’s correct.

(A) |Poker hands|=
(52

5

)
(B) Orderings of ANAGRAM = 7!/3!
(C) Orderings of ”CAT”. = 3!
(D) Orders of MISSISSIPPI = 11!/4!4!2!
(E) Orderings of ANAGRAM = 7!/4!
(F) Orders of MISSISSIPPI = 11!/10!

(A)-(E) are correct.
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Some Practice.

How many orderings of letters of CAT?

3 ways to choose first letter, 2 ways for second, 1 for last.

=⇒ 3×2×1 = 3! orderings

How many orderings of the letters in ANAGRAM?

Ordered, except for A!

total orderings of 7 letters. 7!
total “extra counts” or orderings of three A’s? 3!

Total orderings? 7!
3!

How many orderings of MISSISSIPPI?

4 S’s, 4 I’s, 2 P’s.
11 letters total.

11! ordered objects.
4!×4!×2! ordered objects per “unordered object”

=⇒ 11!
4!4!2! .
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Summary.

First rule: n1 ×n2 · · ·×n3.

k Samples with replacement from n items: nk .
Sample without replacement: n!

(n−k)!

Second rule: when order doesn’t matter (sometimes) can
divide...

Sample without replacement and order doesn’t matter:
(n

k

)
= n!

(n−k)!k ! .
“n choose k ”

One-to-one rule: equal in number if one-to-one correspondence.
pause Bijection!

Sample k times from n objects with replacement and order doesn’t
matter:

(k+n−1
n−1

)
.
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