

Fermat's Little Theorem: For prime *p*, and *a* ≢ 0 (mod *p*), *ap*−1 [≡] ¹ (mod *^p*).

 Proof: Consider *^S* ⁼ {*^a* ·1,...,*^a* ·(*^p* [−]1)}. All different modulo *^p* since *^a* has an inverse modulo *^p*. *S* contains representative of {1,...,*^p* [−]1} modulo *^p*.

(*a* ·1)·(*^a* ·2)···(*^a* ·(*^p* [−]1)) [≡] ¹·2···(*^p* [−]1) mod *^p*,

Since multiplication is commutative.

a(*p*−1)(1···(*^p* [−]1)) [≡] (1···(*^p* [−]1)) mod *^p*. Each of 2,...(*p* [−]1) has an inverse modulo *^p*, solve to get...

a(*p*−1) ≡ ¹ mod *^p*.

Poll

25 / 28

 \Box

Which was used in Fermat's theorem proof?

(A) The mapping $f(x) = ax \mod p$ is a bijection.
(B) Multiplying a number by 1, gives the number

(B) Multiplying a number by 1, gives the number.

(C) All nonzero numbers mod *^p*, have an inverse.

(D) Multiplying a number by 0 gives 0.

(E) Mutliplying elements of sets A and B together is the same if $A = B$.

26 / 28

(A), (C), and (E)

Fermat and Exponent reducing.

Fermat's Little Theorem: For prime *p*, and *a* ≢ 0 (mod *p*), *ap*−1 [≡] ¹ (mod *^p*). What is 2^{101} (mod 7)? Wrong: 2 101 $=$ 2 $^{7*14+3}$ $=$ 2 3 (mod 7) Fermat: 2 is relatively prime to 7. \implies 2⁶ = 1 (mod 7). Fermat: 2 is relatively prime to 7. \implies 2⁶ = 1 ।
Correct: 2¹⁰¹ = 2⁶*¹⁶⁺⁵ = 2⁵ = 32 = 4 (mod 7).
– For a prime modulus, we can reduce exponents modulo *^p* [−]1!

27 / 28

Lecture in a minute.

Extended Euclid: Find *a*,*b* where $ax + by = gcd(x, y)$.
Idea: compute *a b* recursively (euclid) or iteratively Idea: compute *^a*,*^b* recursively (euclid), or iteratively. Inverse: $ax + by = ax = gcd(x, y) \pmod{y}$.
If $acd(x, y) = 1$ we have $ax = 1 \pmod{y}$. If $gcd(x, y) = 1$, we have $ax = 1 \pmod{y}$
 $\rightarrow a = x^{-1} \pmod{y}$ $→ a = x^{-1} \pmod{y}.$

Fundamental Theorem of Algebra: Unique prime factorization of anynatural number.

 Claim: any prime that divides a number *ⁿ*, divides a number in anyfactorization of *ⁿ*.

From Extended Euclid.

Induction.

Chinese Remainder Theorem:

Product of elts == for range/domain:

If $gcd(n, m) = 1$, $x = a \pmod{n}$, $x = b \pmod{m}$ unique sol.

Proof: Find $u = 1 \pmod{n}$, $u = 0 \pmod{m}$, and $v = 0 \pmod{n}$, $v = 1 \pmod{m}$ and $v = 0 \pmod{n}$, $v = 1 \pmod{m}$.
Pen: $x = au + bv = a \pmod{n}$ Then: $x = au + bv = a \pmod{n}$...
 $u = m(m^{-1} \pmod{n} \pmod{n}$ *u* = *m*(*m*^{−1} (mod *n*)) (mod *n*) works!

Fermat: Prime *p***,** *a***^{***p***−1} =** ermat: Prime *p*, *a*^{*p*-1} = 1 (mod *p*).
Proof Idea: *f*(*x*) = *a*(*x*) (mod *p*): bijection on *S* = {1,...,*p*−1}. 28 / 28

p−1

factor in range.