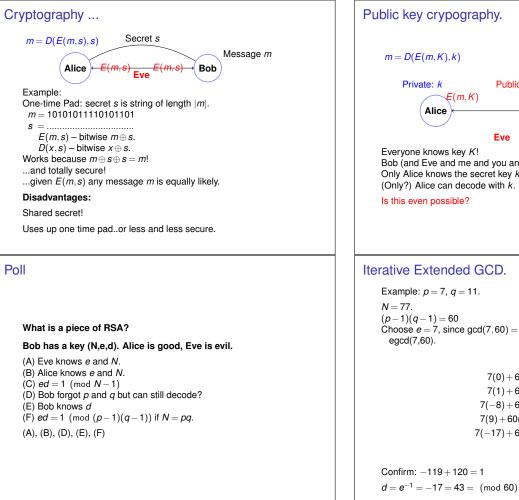
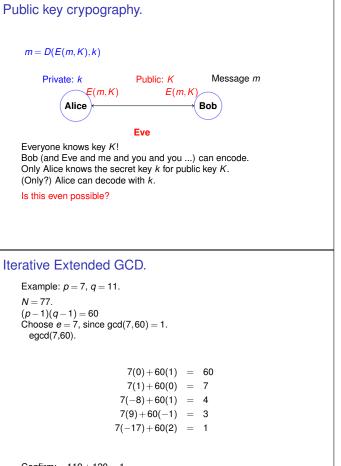
CS70: New Discussion Format	CS70: Lecture 9. Outline.	Simple Chinese Remainder Theorem.
 Small group: Three modes of working. (A) Individual working. (B) Pairs working together. (C) Pairs: one works/one forces talking. Supported by course staff and course volunteers. Why? It works better for learning. Evidence: (1) Experience. (years and years, faculty agree.) (2) Literature. Students hate it. Students happy(in the moment): negatively correlated to learning. See marshmallow test. Delayed gratification. Our job is to have you learn. We would like you to be "happy" in the moment. But the result is what is important. Be nice to the TA's. It's not them. It's the profs.	 Public Key Cryptography RSA system Efficiency: Repeated Squaring. Correctness: Fermat's Theorem. Construction. Warnings. 	My love is won. Zero and One. Nothing and nothing done. Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $gcd(m, n)=1$. CRT Thm: There is a unique solution $x \pmod{m}$. Proof (solution exists): Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$ Consider $v = m(m^{-1} \pmod{m})$. $v = 1 \pmod{n}$ $v = 0 \pmod{m}$ Let $x = au + bv$. $x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$ $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$ This shows there is a solution.
Simple Chinese Remainder Theorem.	Isomorphisms. Bijection:	Poll
CRT Thm: There is a unique solution $x \pmod{mn}$. Proof (uniqueness): If not, two solutions, x and y . $(x-y) \equiv 0 \pmod{m}$ and $(x-y) \equiv 0 \pmod{n}$. $\Rightarrow (x-y)$ is multiple of m and n $gcd(m,n) = 1 \Rightarrow$ no common primes in factorization m and n $\Rightarrow mn (x-y)$ $\Rightarrow x-y \ge mn \Rightarrow x, y \notin \{0,, mn-1\}$. Thus, only one solution modulo mn .	$f(x) = ax \pmod{m} \text{ if } gcd(a, m) = 1.$ Simplified Chinese Remainder Theorem: If $gcd(n, m) = 1$, there is unique $x \pmod{mn}$ where $x = a \pmod{m}$ and $x = b \pmod{n}$. Bijection between $(a \pmod{n}, b \pmod{m})$ and $x \pmod{mn}$. Consider $m = 5, n = 9$, then if $(a, b) = (3, 7)$ then $x = 43 \pmod{45}$. Consider $(a', b') = (2, 4)$, then $x = 22 \pmod{45}$. Now consider: $(a, b) + (a', b') = (0, 2)$. What is x where $x = 0 \pmod{5}$ and $x = 2 \pmod{9}$? Try $43 + 22 = 65 = 20 \pmod{45}$. Is it $0 \pmod{5}$? Yes! Is it $2 \pmod{9}$? Yes! Isomorphism: the actions under $\pmod{5}$, $\pmod{9}$ correspond to actions in $\pmod{45}$!	$x = 5 \mod 7 \text{ and } x = 5 \mod 6$ $y = 4 \mod 7 \text{ and } y = 3 \mod 6$ What's true? (A) $x + y = 2 \mod 7$ (B) $x + y = 2 \mod 6$ (C) $xy = 3 \mod 6$ (D) $xy = 6 \mod 7$ (E) $x = 5 \mod 42$ (F) $y = 39 \mod 42$ All true.

Computer Science: 1 - True 0 - False $1 \vee 1 = 1$ $1 \lor 0 = 1$ $0 \vee 1 = 1$ $0 \lor 0 = 0$ $A \oplus B$ - Exclusive or. $1 \oplus 1 = 0$ $1 \oplus 0 = 1$ $0 \oplus 1 = 1$ $\mathbf{0} \oplus \mathbf{0} = \mathbf{0}$ Note: Also modular addition modulo 2! {0,1} is set. Take remainder for 2. Property: $A \oplus B \oplus B = A$. By cases: $1 \oplus 1 \oplus 1 = 1$ Is public key crypto possible? No. In a sense. One can try every message to "break" system. Too slow. Does it have to be slow? We don't really know. ...but we do public-key cryptography constantly!!! RSA (Rivest, Shamir, and Adleman) Pick two large primes *p* and *q*. Let N = pq. Choose *e* relatively prime to (p-1)(q-1).¹ Compute $d = e^{-1} \mod (p-1)(q-1)$. Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key! Encoding: $mod(x^e, N)$. Decoding: $mod(y^d, N)$. Does $D(E(m)) = m^{ed} = m \mod N$? Yes!

¹Typically small, say e = 3.

Xor





-

Encryption/Decryption Techniques.

Public Key: (77,7) Message Choices: $\{0, \dots, 76\}$.

Message: 2!

 $\begin{array}{l} E(2)=2^{\varrho}=2^{7}\equiv 128=51 \pmod{77} \\ D(51)=51^{43} \pmod{77} \\ \text{uh oh!} \end{array}$

Obvious way: 43 multiplications. Ouch.

In general, O(N) or $O(2^n)$ multiplications!

RSA is pretty fast.

Modular Exponentiation: $x^{y} \mod N$. All *n*-bit numbers. $O(n^{3})$ time.

Remember RSA encoding/decoding!

 $E(m,(N,e)) = m^e \pmod{N}.$ $D(m,(N,d)) = m^d \pmod{N}.$

For 512 bits, a few hundred million operations. Easy, peasey.

Repeated squaring.

```
Notice: 43 = 32 + 8 + 2 + 1 or 101011 in binary.

51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}.

3 multiplications sort of...

Need to compute 51^{32} \dots 51^1.?

51^1 \equiv 51 \pmod{77}

51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}

51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}

51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}

51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}

51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
```

5 more multiplications.

 $51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}.$

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Decoding.

$$\begin{split} E(m,(N,e)) &= m^e \pmod{N},\\ D(m,(N,d)) &= m^d \pmod{N},\\ N &= pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)},\\ \text{Want: } (m^e)^d &= m^{ed} = m \pmod{N}. \end{split}$$

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \dots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary. $x^{43} = x^{32} * x^8 * x^2 * x^1$.

Modular Exponentiation: $x^{\gamma} \mod N$. All *n*-bit numbers. Repeated Squaring: O(n) multiplications. $O(n^2)$ time per multiplication. $\implies O(n^3)$ time. Conclusion: $x^{\gamma} \mod N$ takes $O(n^3)$ time.

Always decode correctly?

$$\begin{split} E(m,(N,e)) &= m^e \pmod{N},\\ D(m,(N,d)) &= m^d \pmod{N},\\ N &= pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)},\\ \text{Want: } (m^e)^d &= m^{ed} = m \pmod{N},\\ \text{Another view:} \\ d &= e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1)+1.\\ \text{Consider...} \\ \textbf{Fermat's Little Theorem: For prime } p, \text{ and } a \not\equiv 0 \pmod{p},\\ a^{p-1} &\equiv 1 \pmod{p}.\\ \implies a^{k(p-1)} &\equiv 1 \pmod{p} \implies a^{k(p-1)+1} = a \pmod{p}\\ \text{versus} \quad a^{k(p-1)(q-1)+1} = a \pmod{pq}.\\ \text{Similar, not same, but useful.} \end{split}$$

Correct decoding...

Fermat's Little Theorem: For prime *p*, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$. **Proof:** Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}$. All different modulo p since a has an inverse modulo p. *S* contains representative of $\{1, \ldots, p-1\}$ modulo *p*.

 $(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \mod p$,

Since multiplication is commutative.

 $a^{(p-1)}(1\cdots(p-1)) \equiv (1\cdots(p-1)) \mod p.$ Each of 2,... (p-1) has an inverse modulo p, solve to get...

 $a^{(p-1)} \equiv 1 \mod p$.

...Decoding correctness...

Lemma 1: For any prime *p* and any *a*, *b*, $a^{1+b(p-1)} \equiv a \pmod{p}$ **Lemma 2:** For any two different primes *p*, *q* and any *x*, *k*, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$ Proof: Let a = x, b = k(p-1) and apply Lemma 1 with modulus q. $x^{1+k(p-1)(q-1)} \equiv x \pmod{q}$ Let a = x, b = k(q-1) and apply Lemma 1 with modulus p. $x^{1+k(p-1)(q-1)} \equiv x \pmod{p} x^{1+k(q-1)(p-1)} - x$ is multiple of p and q. $x^{1+k(q-1)(p-1)} - x \equiv 0 \mod (pq) \Longrightarrow x^{1+k(q-1)(p-1)} = x \mod pq.$ From CRT: $y = x \pmod{p}$ and $y = x \pmod{q} \implies y = x$.

Poll Mark what is true.

(A) $2^7 = 1 \mod 7$ $(B) 2^6 = 1 \mod 7$ (C) 2^{1} , 2^{2} , 2^{3} , 2^{4} , 2^{5} , 2^{6} , 2^{7} are distinct mod 7. (D) 2¹, 2², 2³, 2⁴, 2⁵, 2⁶ are distinct mod 7 (E) $2^{15} = 2 \mod 7$ $(F) 2^{15} = 1 \mod 7$ (B), (F)

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k. $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Theorem: RSA correctly decodes! Recall

 $D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},$

where $ed \equiv 1 \mod (p-1)(q-1) \implies ed = 1 + k(p-1)(q-1)$

 $x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.$

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \neq 0 \pmod{p}$,

$a^{p-1} \equiv 1 \pmod{p}$.

Lemma 1: For any prime p and any a, b, $a^{1+b(p-1)} \equiv a \pmod{p}$ **Proof:** If $a \equiv 0 \pmod{p}$, of course. Otherwise $a^{1+b(p-1)} \equiv a^1 * (a^{p-1})^b \equiv a * (1)^b \equiv a \pmod{p}$

Construction of keys....

1. Find large (100 digit) primes p and q? **Prime Number Theorem:** $\pi(N)$ number of primes less than N.For all $N \ge 17$

 $\pi(N) \geq N/\ln N.$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test., Primes in P).

For 1024 bit number, 1 in 710 is prime.

- 2. Choose *e* with gcd(e, (p-1)(q-1)) = 1. Use gcd algorithm to test.
- 3. Find inverse *d* of *e* modulo (p-1)(q-1). Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.

Security of RSA. Signatures using RSA. Much more to it..... Verisign: k_v, K_v If Bobs sends a message (Credit Card Number) to Alice, $[C, S_v(C)]$ $C = E(S_V(C), k_V)?$ $[C, S_{v}(C)]$ $[C, S_{v}(C)]$ Eve sees it. Security? Browser. Ky Amazon ← Eve can send credit card again!! 1. Alice knows p and q. Certificate Authority: Verisign, GoDaddy, DigiNotar,... The protocols are built on RSA but more complicated; 2. Bob only knows, N(=pq), and e. Verisign's key: $K_V = (N, e)$ and $k_V = d$ (N = pq). For example, several rounds of challenge/response. Browser "knows" Verisign's public key: K_V . Does not know, for example, d or factorization of N. One trick: Amazon Certificate: C = "I am Amazon. My public Key is K_A ." 3. I don't know how to break this scheme without factoring N. Bob encodes credit card number, c, Versign signature of C: $S_v(C)$: $D(C, k_V) = C^d \mod N$. No one I know or have heard of admits to knowing how to factor N. concatenated with random k-bit number r. Browser receives: [C, y]Breaking in general sense \implies factoring algorithm. Never sends just c. Checks $E(\gamma, K_V) = C$? Again, more work to do to get entire system. $E(S_{\nu}(C), K_{\nu}) = (S_{\nu}(C))^{e} = (C^{d})^{e} = C^{de} = C \pmod{N}$ Valid signature of Amazon certificate C! CS161... Security: Eve can't forge unless she "breaks" RSA scheme. RSA Other Eve. Poll Get CA to certify fake certificates: Microsoft Corporation. Signature authority has public key (N,e). Public Key Cryptography: 2001..Doh. (A) Given message/signature (x,y) : check $y^d = x \pmod{N}$ $D(E(m,K),k) = (m^e)^d \mod N = m.$... and August 28, 2011 announcement. (B) Given message/signature (x, y): check $y^e = x \pmod{N}$ Signature scheme: (C) Signature of message x is $x^e \pmod{N}$ DigiNotar Certificate issued for Microsoft!!! (D) Signature of message x is $x^d \pmod{N}$ $E(D(C,k),K) = (C^d)^e \mod N = C$ How does Microsoft get a CA to issue certificate to them ... and only them?

Summary.

Public-Key Encryption. RSA Scheme: N = pq and $d = e^{-1} \pmod{(p-1)(q-1)}$. $E(x) = x^e \pmod{N}$. $D(y) = y^d \pmod{N}$. Repeated Squaring \implies efficiency. Fermat's Theorem \implies correctness. Good for Encryption and Signature Schemes.