
CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.

(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.

(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.

(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why?

It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:

(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)

(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.

Students happy(in the moment): negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment):

negatively correlated to learning.
See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test.

Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.

We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy”

in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.

But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s.

It’s not them. It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them.

It’s the profs.

CS70: New Discussion Format
Small group:

Three modes of working.
(A) Individual working.
(B) Pairs working together.
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning.

See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be “happy” in the moment.
But the result is what is important.

Be nice to the TA’s. It’s not them. It’s the profs.

CS70: Lecture 9. Outline.

1. Public Key Cryptography

2. RSA system

2.1 Efficiency: Repeated Squaring.
2.2 Correctness: Fermat’s Theorem.
2.3 Construction.

3. Warnings.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won.

Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One.

Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n)

where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):

Consider u = n(n−1 (mod m)).
u = 0 (mod n) u = 1 (mod m)

Consider v = m(m−1 (mod n)).
v = 1 (mod n) v = 0 (mod m)

Let x = au+bv .
x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n)

u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)

Consider v = m(m−1 (mod n)).
v = 1 (mod n) v = 0 (mod m)

Let x = au+bv .
x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n)

v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)

Let x = au+bv .
x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m)

since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)

x = b (mod n) since au = 0 (mod n) and bv = b (mod n)
This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)

x = b (mod n) since au = 0 (mod n) and bv = b (mod n)
This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n)

since au = 0 (mod n) and bv = b (mod n)
This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):

If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).

=⇒ (x −y) is multiple of m and n
gcd(m,n) = 1 =⇒ no common primes in factorization m and n

=⇒ mn|(x −y)
=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n

=⇒ mn|(x −y)
=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn

=⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.

Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:

If gcd(n,m) = 1, there is unique x (mod mn) where
x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider:

(a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65

= 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)?

Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes!

Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)?

Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:

the actions under (mod 5), (mod 9)
correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(n,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Poll

x = 5 mod 7 and x = 5 mod 6
y = 4 mod 7 and y = 3 mod 6

What’s true?

(A) x +y = 2 mod 7
(B) x +y = 2 mod 6
(C) xy = 3 mod 6
(D) xy = 6 mod 7
(E) x = 5 mod 42
(F) y = 39 mod 42

All true.

Poll

x = 5 mod 7 and x = 5 mod 6
y = 4 mod 7 and y = 3 mod 6

What’s true?

(A) x +y = 2 mod 7
(B) x +y = 2 mod 6
(C) xy = 3 mod 6
(D) xy = 6 mod 7
(E) x = 5 mod 42
(F) y = 39 mod 42

All true.

Poll

x = 5 mod 7 and x = 5 mod 6
y = 4 mod 7 and y = 3 mod 6

What’s true?

(A) x +y = 2 mod 7
(B) x +y = 2 mod 6
(C) xy = 3 mod 6
(D) xy = 6 mod 7
(E) x = 5 mod 42
(F) y = 39 mod 42

All true.

Poll

x = 5 mod 7 and x = 5 mod 6
y = 4 mod 7 and y = 3 mod 6

What’s true?

(A) x +y = 2 mod 7
(B) x +y = 2 mod 6
(C) xy = 3 mod 6
(D) xy = 6 mod 7
(E) x = 5 mod 42
(F) y = 39 mod 42

All true.

Xor

Computer Science:

1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1

1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.

1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0

1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!

{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.

By cases: 1⊕1⊕1 = 1. . . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1.

. . .

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m
E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:

One-time Pad: secret s is string of length |m|.
m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101

s =
E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.

D(x ,s) – bitwise x ⊕s.
Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!

...and totally secure!

...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!

...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..

or less and less secure.

Cryptography ...

BobAlice
Eve

Secret s

Message m

E(m,s)

E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x ⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: K

Private: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k

Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m
E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve

and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me

and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you

and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .

(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system.

Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow?

We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.

...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).

Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too
slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows e and N.
(B) Alice knows e and N.
(C) ed = 1 (mod N −1)
(D) Bob forgot p and q but can still decode?
(E) Bob knows d
(F) ed = 1 (mod (p−1)(q−1)) if N = pq.

(A), (B), (D), (E), (F)

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows e and N.
(B) Alice knows e and N.
(C) ed = 1 (mod N −1)
(D) Bob forgot p and q but can still decode?
(E) Bob knows d
(F) ed = 1 (mod (p−1)(q−1)) if N = pq.

(A), (B), (D), (E), (F)

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows e and N.
(B) Alice knows e and N.
(C) ed = 1 (mod N −1)
(D) Bob forgot p and q but can still decode?
(E) Bob knows d
(F) ed = 1 (mod (p−1)(q−1)) if N = pq.

(A), (B), (D), (E), (F)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.

(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60

Choose e = 7, since gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60

7(1)+60(0) = 7
7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4

7(9)+60(−1) = 3
7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm:

−119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)

Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2)

= 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e

= 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27

≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128

= 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)

D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)

uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications.

Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.

Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.

5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143

= 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1

= 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).

3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...

Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?

511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)

512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 =

(51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)

514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 =

(512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512)

= 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)

518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 =

(514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514)

= 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)

5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)

5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications

versus 42.

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
3 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600 ≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364 ≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809 ≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369 ≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,

x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,

x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4,

. . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,

x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.

Example: 43 = 101011 in binary.
x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example:

43 = 101011 in binary.
x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N.

All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.

O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.

=⇒ O(n3) time.
Conclusion: xy mod N takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N

takes O(n3) time.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2⌊logy⌋
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

RSA is pretty fast.

Modular Exponentiation: xy mod N.

All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).

D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.

Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

Decoding.

E(m,(N,e)) = me (mod N).

D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq

and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want:

(me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Always decode correctly?

E(m,(N,e)) = me (mod N).

D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq

and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want:

(me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:

d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p)

=⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒

ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1

= a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof:

Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.

S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p,

solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Poll
Mark what is true.

(A) 27 = 1 mod 7
(B) 26 = 1 mod 7
(C) 21,22,23,24,25,26,27 are distinct mod 7.
(D) 21,22,23,24,25,26 are distinct mod 7
(E) 215 = 2 mod 7
(F) 215 = 1 mod 7

(B), (F)

Poll
Mark what is true.

(A) 27 = 1 mod 7
(B) 26 = 1 mod 7
(C) 21,22,23,24,25,26,27 are distinct mod 7.
(D) 21,22,23,24,25,26 are distinct mod 7
(E) 215 = 2 mod 7
(F) 215 = 1 mod 7

(B), (F)

Poll
Mark what is true.

(A) 27 = 1 mod 7
(B) 26 = 1 mod 7
(C) 21,22,23,24,25,26,27 are distinct mod 7.
(D) 21,22,23,24,25,26 are distinct mod 7
(E) 215 = 2 mod 7
(F) 215 = 1 mod 7

(B), (F)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a ≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof:

If a ≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a ≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a ≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡

a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a ≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b

≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a ≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq)

=⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Proof:

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!

Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d

= xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡

xk(p−1)(q−1)+1≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1

≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed ≡ x (mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1≡ x (mod pq).

Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime?

...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..

Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test..

Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.

Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).

Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.

Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.

Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Signatures using RSA.

Verisign:

kv , Kv

Browser.

Kv

Amazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign:

kv , Kv

Browser.

Kv

Amazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser.

Kv

Amazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)

Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .

Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”

Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.

Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.

Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]

Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV)

= (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e

= (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e

= Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde

= C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV)= Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

Poll

Signature authority has public key (N,e).

(A) Given message/signature (x,y) : check yd = x (mod N)
(B) Given message/signature (x ,y): check ye = x (mod N)
(C) Signature of message x is xe (mod N)
(D) Signature of message x is xd (mod N)

Poll

Signature authority has public key (N,e).

(A) Given message/signature (x,y) : check yd = x (mod N)
(B) Given message/signature (x ,y): check ye = x (mod N)
(C) Signature of message x is xe (mod N)
(D) Signature of message x is xd (mod N)

Poll

Signature authority has public key (N,e).

(A) Given message/signature (x,y) : check yd = x (mod N)
(B) Given message/signature (x ,y): check ye = x (mod N)
(C) Signature of message x is xe (mod N)
(D) Signature of message x is xd (mod N)

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:

N = pq and d = e−1 (mod (p−1)(q−1)).
E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption

and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

