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Functions of Random Variables
In the previous note, we defined a random variable on a space as the sum of other random variables; for
example, the number of balls in a bin was the sum of indicator random variables for whether each ball fell
into a bin. In this note, we will consider other functions of a random variable.

Formally, let X be a random variable on a sample space Ω with probability distribution PX . Then for
a function f (·) on the range of X , f (X) is the random variable Y on the same sample space Ω, where
Y (ω) = f (X(ω)) for ω ∈ Ω.

In terms of sample spaces, the event “Y = y” is equivalent to the event “X ∈ f−1(y)”. Here, we take f−1(y)
to be the set {x | f (x) = y}. (When f (·) is one-to-one, it is a bit simpler, i.e., “X = x” is the same event as
“Y = f (x)”.)

With this view, the distribution of Y = f (X), PY , can be derived from the distribution of X as follows:

PY [Y = y] = ∑
x: f (x)=y

PX [X = x].

From this, we observe that

E[Y ] = ∑
y

y PY [Y = y] = ∑
y

∑
x: f (x)=y

y PX [X = x] = ∑
x

f (x)PX [X = x].

The first equality is by the definition of expectation, the second is from the derivation of PY , and the last
comes by observing that each value of x is included exactly once in the inner summation. Thus, we have the
following identity:

E[ f (X)] = ∑
x

f (x)PX [X = x].

This particular identity is sometimes called the Law of the Unconscious Statistician (LOTUS) as it is useful
and used without much thought at times. For example, we will often use EX2 = ∑x x2PX [X = x] throughout
the following sections.

Random Variables: Variance and Covariance
We have seen in the previous note that if we take a biased coin that shows heads with probability p and toss
it n times, then the expected number of heads is np. What this means is that if we repeat the experiment
multiple times, where in each experiment we toss the coin n times, then on average we get np heads. But in
any single experiment, the number of heads observed can be any value between 0 and n. What can we say
about how far off we are from the expected value? That is, what is the typical deviation of the number of
heads from np?
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1 Random Walk
Let us consider a simpler setting that is equivalent to tossing a fair coin n times, but is more amenable to
analysis. Suppose we have a particle that starts at position 0 and performs a random walk in one dimension.
At each time step, the particle moves either one step to the right or one step to the left with equal probability
(this kind of random walk is called symmetric), and the move at each time step is independent of all other
moves. We think of these random moves as taking place according to whether a fair coin comes up heads or
tails. The expected position of the particle after n moves is back at 0, but how far from 0 should we typically
expect the particle to end up?

Denoting a right-move by +1 and a left-move by −1, we can describe the probability space here as the set
of all sequences of length n over the alphabet {±1}, each having equal probability 1

2n . Let the r.v. Sn denote
the position of the particle (relative to our starting point 0) after n moves. Thus, we can write

Sn = X1 +X2 + · · ·+Xn, (1)

where Xi =+1 if the ith move is to the right and Xi =−1 if the move is to the left.

The expectation of Sn can be easily computed as follows. Since E[Xi] = (1
2 ×1)+(1

2 × (−1)) = 0, applying
linearity of expectation immediately gives E[Sn] = ∑

n
i=1E[Xi] = 0. But of course this is not very informative,

and is due to the fact that positive and negative deviations from 0 cancel out.

What we are really asking is: What is the expected value of |Sn|, the distance of the particle from 0?

Rather than consider the r.v. |Sn|, which is a little difficult to work with due to the absolute value operator, we
will instead look at the r.v. S2

n. Notice that this also has the effect of making all deviations from 0 positive,
so it should also give a good measure of the distance from 0. However, because it is the squared distance,
we will need to take a square root at the end.

We will now show that the expected square distance after n steps is equal to n:

Proposition 16.1. For the random variable Sn defined in (1), we have E
[
S2

n
]
= n.

Proof. We use the expression (1) and expand the square:

E
[
S2

n
]
= E

[
(X1 +X2 + · · ·+Xn)

2]= E

[
n

∑
i=1

X2
i +2∑

i< j
XiX j

]
=

n

∑
i=1

E
[
X2

i
]
+2∑

i< j
E[XiX j]. (2)

In the last equality we have used linearity of expectation. To proceed, we need to compute E
[
X2

i
]

and
E[XiX j] for i ̸= j. Since Xi can take on only values ±1, clearly X2

i = 1 always, so E
[
X2

i
]
= 1. To compute

E[XiX j] for i ̸= j, note XiX j =+1 when Xi = X j =+1 or Xi = X j =−1, and otherwise XiX j =−1. Therefore,

P[XiX j = 1] = P[(Xi = X j =+1)∨ (Xi = X j =−1)]

= P[Xi = X j =+1]+P[Xi = X j =−1]

= P[Xi =+1]×P[X j =+1]+P[Xi =−1]×P[X j =−1]

=
1
4
+

1
4
=

1
2
,

where the second equality follows from the fact that the events Xi = X j =+1 and Xi = X j =−1 are mutually
exclusive, while the third equality follows from the independence of the events Xi = +1 and X j = +1, and
likewise for the events Xi = −1 and X j = −1. In a similar vein, one obtains P[XiX j = −1] = 1

2 , and hence
E[XiX j] = 0.
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Finally, plugging E
[
X2

i
]
= 1 and E[XiX j] = 0, for i ̸= j, into (2) gives E

[
S2

n
]
= ∑

n
i=1 1+ 2∑i< j 0 = n, as

desired.

So, for the symmetric random walk example, we see that the expected squared distance from 0 is n. One
interpretation of this is that we might expect to be a distance of about

√
n away from 0 after n steps. However,

we have to be careful here: we cannot simply argue that E[|Sn|] =
√

E[S2
n] =

√
n. (Why not?) We will see

later in the course how to make precise deductions about |Sn| from knowledge of E
[
S2

n
]
. For the moment,

however, let us agree to view E
[
S2

n
]

as an intuitive measure of “spread” of the r.v. Sn.

For a more general r.v. X with expectation E[X ] = µ , what we are really interested in is E
[
(X −µ)2

]
, the

expected squared distance from the mean. In our symmetric random walk example, we have E[Sn] = µ = 0,
so E

[
(Sn −µ)2

]
just reduces to E

[
S2

n
]
.

Definition 16.1 (Variance). For a r.v. X with expectation E[X ] = µ , the variance of X is defined to be

Var(X) = E
[
(X −µ)2].

The square root σ(X) :=
√

Var(X) is called the standard deviation of X.

The point of taking the square root of variance is to put the standard deviation “on the same scale” as the r.v.
itself. Since the variance and standard deviation differ just by a square, it really doesn’t matter which one
we choose to work with as we can always compute one from the other. We shall usually use the variance.
For the random walk example above, Proposition 16.1 implies that Var(Sn) = n, and the standard deviation
σ(Sn) of Sn is

√
n.

The following observation provides a slightly different way to compute the variance, which sometimes turns
out to be simpler.

Theorem 16.1. For a r.v. X with expectation E[X ] = µ , we have Var(X) = E
[
X2
]
−µ2.

Proof. From the definition of variance, we have

Var(X) = E
[
(X −µ)2]= E

[
X2 −2µX +µ

2]= E
[
X2]−2µ E[X ]+µ

2 = E
[
X2]−µ

2.

In the third equality, we used linearity of expectation. We also used the fact that since µ =E[X ] is a constant,
E[µX ] = µ E[X ] = µ2 and E

[
µ2
]
= µ2.

Another important property that will come in handy is the following: For any random variable X and con-
stant c, we have

Var(cX) = c2Var(X). (3)

Verifying this is simple and left as an exercise.

2 Variance Computation
Let us see some examples of variance calculations.

1. Fair die. Let X be the score on the roll of a single fair die. Recall from the previous note that E[X ] = 7
2 .

So we just need to compute E
[
X2
]
, which is a routine calculation:

E
[
X2]= 1

6
(
12 +22 +32 +42 +52 +62)= 91

6
.
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Thus, from Theorem 16.1,

Var(X) = E
[
X2]− (E[X ])2 =

91
6
− 49

4
=

35
12

.

2. Uniform distribution. More generally, suppose X is a uniform random variable on the set {1, . . . ,n},
written X ∼ Uniform{1, . . . ,n}, so X takes on values 1, . . . ,n with equal probability 1

n . The mean,
variance and standard deviation of X are given by:

E[X ] =
n+1

2
, Var(X) =

n2 −1
12

, σ(X) =

√
n2 −1

12
. (4)

You should verify these as an exercise.

3. Fixed points of permutations. Let Xn be the number of fixed points in a random permutation of n
items (i.e., in the homework permutation example, Xn is the number of students in a class of size n who
receive their own homework after shuffling). We saw in the previous note that E[Xn] = 1, regardless
of n. To compute E

[
X2

n
]
, write Xn = I1 + I2 + · · ·+ In, where Ii = 1 if i is a fixed point, and Ii = 0

otherwise. Then as usual we have

E
[
X2

n
]
=

n

∑
i=1

E
[
I2
i
]
+2∑

i< j
E[IiI j]. (5)

Since Ii is an indicator r.v., we have that E
[
I2
i
]
= P[Ii = 1] = 1

n . For i < j, since both Ii and I j are
indicators, we can compute E[IiI j] as follows:

E[IiI j] = P[IiI j = 1] = P[Ii = 1∧ I j = 1] = P[both i and j are fixed points] =
1

n(n−1)
.

Make sure that you understand the last step here. Plugging this into equation (5) we get

E
[
X2

n
]
=

n

∑
i=1

1
n
+2∑

i< j

1
n(n−1)

=

(
n× 1

n

)
+

[
2
(

n
2

)
× 1

n(n−1)

]
= 1+1 = 2.

Thus, Var(Xn) = E
[
X2

n
]
− (E[Xn])

2 = 2− 1 = 1. That is, the variance and the mean are both equal
to 1. Like the mean, the variance is also independent of n. Intuitively at least, this means that it is
unlikely that there will be more than a small number of fixed points even when the number of items,
n, is very large.

3 Sum of Independent Random Variables
One of the most important and useful facts about variance is that if a random variable X is the sum of
independent random variables X =X1+· · ·+Xn, then its variance is the sum of the variances of the individual
r.v.’s. In particular, if the individual r.v.’s Xi are identically distributed (i.e., they have the same distribution),
then Var(X) = ∑

n
i=1 Var(Xi) = n ·Var(X1). This means that the standard deviation is σ(X) =

√
n ·σ(X1).

Note that by contrast, the expected value is E[X ] = n ·E[X1]. Intuitively this means that whereas the average
value of X grows proportionally to n, the spread of the distribution grows proportionally to

√
n, which is

much smaller than n. In other words the distribution of X tends to concentrate around its mean.

Let us now formalize these ideas. First, we have the following result which states that the expected value of
the product of two independent random variables is equal to the product of their expected values.
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Theorem 16.2. For independent random variables X ,Y , we have E[XY ] = E[X ]E[Y ].

Proof. We have

E[XY ] = ∑
a

∑
b

ab×P[X = a,Y = b]

= ∑
a

∑
b

ab×P[X = a]×P[Y = b]

=

(
∑
a

a×P[X = a]
)
×

(
∑
b

b×P[Y = b]

)
= E[X ]×E[Y ],

as required. In the second line here we made crucial use of independence.

We now use the above theorem to conclude the nice property that the variance of the sum of independent
random variables is equal to the sum of their variances.

Theorem 16.3. For independent random variables X ,Y , we have

Var(X +Y ) = Var(X)+Var(Y ).

Proof. From the alternative formula for variance in Theorem 16.1 and linearity of expectation, we have

Var(X +Y ) = E
[
(X +Y )2]− (E[X +Y ])2

= E
[
X2]+E

[
Y 2]+2E[XY ]− (E[X ]+E[Y ])2

= (E
[
X2]−E[X ]2)+(E

[
Y 2]−E[Y ]2)+2(E[XY ]−E[X ]E[Y ])

= Var(X)+Var(Y )+2(E[XY ]−E[X ]E[Y ]).

Since X ,Y are independent, Theorem 16.2 implies that the final term in this expression is zero.

It is very important to remember that neither of the above two results is true in general when X ,Y are not
independent. As a simple example, note that even for a {0,1}-valued r.v. X with P[X = 1] = p, E

[
X2
]
= p

is not equal to E[X ]2 = p2 (because of course X and X are not independent!). This is in contrast to linearity
of expectation, where we saw that the expectation of a sum of r.v.’s is the sum of the expectations of the
individual r.v.’s, regardless of whether or not the r.v.’s are independent.

Example

Let us return to our motivating example of a sequence of n coin tosses. Let Xn denote the number of
Heads in n tosses of a biased coin with Heads probability p (i.e., Xn ∼ Binomial(n, p)). As usual, we write
Xn = I1 + I2 + · · ·+ In, where Ii = 1 if the ith toss is H, and Ii = 0 otherwise.

We already know E[Xn] = ∑
n
i=1E[Ii] = np. We can compute Var(Ii) = E

[
I2
i
]
−E[Ii]

2 = p− p2 = p(1− p).
Since the Ii’s are independent, by Theorem 16.3 we get Var(Xn) = ∑

n
i=1 Var(Ii) = np(1− p).

As an example, for a fair coin (p = 1
2 ) the expected number of Heads in n tosses is n

2 , and the standard
deviation is

√n
4 =

√
n

2 . Note that since the maximum number of Heads is n, the standard deviation is much
less than this maximum number for large n. This is in contrast to the previous example of the uniformly
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distributed random variable (4), where the standard deviation σ(X) =
√

n2−1
12 ≈ n√

12
(for large n) is of the

same order as the largest value, n. In this sense, the spread of a binomially distributed r.v. is much smaller
than that of a uniformly distributed r.v.

4 Covariance and Correlation
The expression E[XY ]−E[X ]E[Y ] in the proof of Theorem 16.3 is a measure of association between X ,Y ,
and is called the covariance:

Definition 16.2 (Covariance). The covariance of random variables X and Y , denoted Cov(X ,Y ), is defined
as

Cov(X ,Y ) = E[(X −µX)(Y −µY )] = E[XY ]−E[X ]E[Y ],
where µX = E[X ] and µY = E[Y ].

Remarks. We note some important facts about covariance.

1. If X ,Y are independent, then Cov(X ,Y ) = 0. However, the converse is not true.

2. Cov(X ,X) = Var(X).

3. Covariance is bilinear; i.e., for any collection of random variables {X1, . . . ,Xn},{Y1, . . . ,Ym} and fixed
constants {a1 . . . ,an},{b1, . . . ,bm},

Cov(∑n
i=1 aiXi,∑

m
j=1 b jYj) = ∑

n
i=1 ∑

m
j=1 aib jCov(Xi,Yj).

For general random variables X and Y ,

Var(X +Y ) = Var(X)+Var(Y )+2Cov(X ,Y ).

While the sign of Cov(X ,Y ) is informative of how X and Y are associated, its magnitude is difficult to
interpret. A statistic that is easier to interpret is correlation:

Definition 16.3 (Correlation). Suppose X and Y are random variables with σ(X)> 0 and σ(Y )> 0. Then,
the correlation of X and Y is defined as

Corr(X ,Y ) =
Cov(X ,Y )
σ(X)σ(Y )

.

Correlation is more useful than covariance because the former always ranges between −1 and +1, as the
following theorem shows:

Theorem 16.4. For any pair of random variables X and Y with σ(X)> 0 and σ(Y )> 0,

−1 ≤ Corr(X ,Y )≤+1.

Proof. Let E[X ] = µX and E[Y ] = µY , and define X̃ = (X − µX)/σ(X) and Ỹ = (Y − µY )/σ(Y ). Then,
E[X̃2] = E[Ỹ 2] = 1, so

0 ≤ E[(X̃ − Ỹ )2] = E[X̃2]+E[Ỹ 2]−2E[X̃Ỹ ] = 2−2E[X̃Ỹ ]

0 ≤ E[(X̃ + Ỹ )2] = E[X̃2]+E[Ỹ 2]+2E[X̃Ỹ ] = 2+2E[X̃Ỹ ],

which implies −1 ≤ E[X̃Ỹ ]≤+1. Now, noting that E[X̃ ] = E[Ỹ ] = 0, we obtain Corr(X ,Y ) = Cov(X̃ ,Ỹ ) =
E[X̃Ỹ ]. Hence, −1 ≤ Corr(X ,Y )≤+1.
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Note that the above proof shows that Corr(X ,Y ) = +1 if and only if E[(X̃ − Ỹ )2] = 0, which implies X̃ = Ỹ
with probability 1. Similarly, Corr(X ,Y ) =−1 if and only if E[(X̃ + Ỹ )2] = 0, which implies X̃ =−Ỹ with
probability 1. In terms of the original random variables X ,Y , this means the following: if Corr(X ,Y ) =±1,
then there exist constants a and b such that, with probability 1,

Y = aX +b,

where a > 0 if Corr(X ,Y ) = +1 and a < 0 if Corr(X ,Y ) =−1.

5 Exercises
1. For any random variable X and constant c, show that Var(cX) = c2Var(X).

2. For X ∼ Uniform{1, . . . ,n}, show that E[X ] and Var(X) are as shown in (4).
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