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Continuous Probability Distributions
Up to now we have focused exclusively on discrete sample spaces Ω, where the number of sample points
ω ∈ Ω is either finite or countably infinite (such as the integers). As a consequence, we have only been able
to talk about discrete random variables, which take on only a finite or countably infinite number of values.

But in real life many quantities that we wish to model probabilistically are real-valued; examples include
the position of a particle in a box, the time at which an certain incident happens, or the direction of travel
of a meteorite. In this lecture, we discuss how to extend the concepts we’ve seen in the discrete setting to
this continuous setting. As we shall see, everything translates in a natural way once we have set up the right
framework. The framework involves some elementary calculus but (at this level of discussion) nothing too
daunting.

1 Continuous Uniform Probability Space
Suppose we spin a “wheel of fortune" and record the position of the pointer on the outer circumference of
the wheel. Assuming that the circumference is of length ℓ and that the wheel is unbiased, the position is
presumably equally likely to take on any value in the real interval [0, ℓ]. How do we model this experiment
using a probability space?

Consider for a moment the analogous discrete setting, where the pointer can stop only at a finite number m
of positions distributed evenly around the wheel. (If m is very large, then this is in some sense similar to the
continuous setting, which we can think of as the limit m → ∞.) Then we would model this situation using
the discrete sample space Ω = {0, ℓ

m ,
2ℓ
m , . . . , (m−1)ℓ

m }, with uniform probabilities P[ω] = 1
m for each ω ∈ Ω.

In the continuous setting, however, we get into trouble if we try the same approach. If we let ω range over
all real numbers in Ω = [0, ℓ], what value should we assign to each P[ω]? By uniformity, this probability
should be the same for all ω . But if we assign P[ω] to be any positive value, then because there are infinitely
many ω in Ω, the sum of all probabilities P[ω] will be ∞! Thus, P[ω] must be zero for all ω ∈ Ω. But if
all of our sample points have probability zero, then we are unable to assign meaningful probabilities to any
events!

To resolve this problem, consider instead any interval [a,b]⊆ [0, ℓ], where b > a. Can we assign a non-zero
probability value to this interval? Since the total probability assigned to [0, ℓ] must be 1, and since we want
our probability to be uniform, the logical value for the probability of interval [a,b] is

length of [a,b]
length of [0, ℓ]

=
b−a
ℓ

.

In other words, the probability of an interval is proportional to its length.

Note that intervals are subsets of the sample space Ω and are therefore events. So in contrast to discrete
probability, where we assigned probabilities to points in the sample space, in continuous probability we
are assigning probabilities to certain basic events (in this case intervals). What about probabilities of other
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events? By specifying the probability of intervals, we have also specified the probability of any event E
which can be written as the disjoint union of (a finite or countably infinite number of) intervals, E = ∪iEi.
For then we can write P[E] = ∑iP[Ei], in analogous fashion to the discrete case. Thus for example the
probability that the pointer ends up in the first or third quadrants of the wheel is ℓ/4

ℓ + ℓ/4
ℓ = 1

2 . For all
practical purposes, such events are all we really need.1

2 Continuous Random Variables
Recall that in the discrete setting we typically work with random variables and their distributions, rather
than directly with probability spaces and events. The simplest example of a continuous random variable
is the position X of the pointer in the wheel of fortune, as discussed above. This random variable has the
uniform distribution on [0, ℓ]. How, precisely, should we define the distribution of a continuous random
variable? In the discrete case the distribution of a r.v. X is described by specifying, for each possible value a,
the probability P[X = a]. But for the r.v. X corresponding to the position of the pointer, we have P[X = a] = 0
for every a, so we run into the same problem as we encountered above in defining the probability space.

The resolution is the same: instead of specifying P[X = a], we specify P[a ≤ X ≤ b] for all intervals [a,b].2

To do this formally, we need to introduce the concept of a probability density function (sometimes referred
to just as a “density", or a “p.d.f.").

Definition 21.1 (Probability Density Function). A probability density function (p.d.f.) for a real-valued
random variable X is a function f : R→ R satisfying:

1. f is non-negative: f (x)≥ 0 for all x ∈ R.

2. The total integral of f is equal to 1:
∫

∞

−∞
f (x)dx = 1.

Then the distribution of X is given by:

P[a ≤ X ≤ b] =
∫ b

a
f (x)dx for all a < b.

Let us examine this definition. Note that the definite integral is just the area under the curve f between the
values a and b. Thus f plays a similar role to the “histogram" we sometimes draw to picture the distribution
of a discrete random variable. The first condition that f be non-negative ensures that the probability of every
event is non-negative. The second condition that the total integral of f equal to 1 ensures that it defines a
valid probability distribution, because the r.v. X must take on real values:

P[X ∈ R] = P[−∞ < X < ∞] =
∫

∞

−∞

f (x)dx = 1. (1)

For example, consider the wheel-of-fortune r.v. X , which has uniform distribution on the interval [0, ℓ]. This
means the density f of X vanishes outside this interval: f (x) = 0 for x < 0 and for x > ℓ. Within the interval
[0, ℓ] we want the distribution of X to be uniform, which means we should take f to be a constant f (x) = c
for 0 ≤ x ≤ ℓ. The value of c is determined by the requirement (1) that the total area under f is 1:

1 =
∫

∞

−∞

f (x)dx =
∫ ℓ

0
cdx = cℓ,

1A formal treatment of which events can be assigned a well-defined probability requires a discussion of measure theory, which
is beyond the scope of this course.

2Note that it does not matter whether or not we include the endpoints a,b; since P[X = a] = P[X = b] = 0, we have
P[a < X < b] = P[a ≤ X ≤ b].
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which gives us c = 1
ℓ . Therefore, the density of the uniform distribution on [0, ℓ] is given by

f (x) =


0, for x < 0,
1/ℓ, for 0 ≤ x ≤ ℓ,

0, for x > ℓ.

Remark: Following the “histogram" analogy above, it is tempting to think of f (x) as a “probability." How-
ever, f (x) doesn’t itself correspond to the probability of anything! In particular, there is no requirement that
f (x) be bounded by 1. For example, the density of the uniform distribution on the interval [0, ℓ] with ℓ= 1

2 is
equal to f (x) = 1/(1

2) = 2 for 0 ≤ x ≤ 1
2 , which is greater than 1. To connect density f (x) with probabilities,

we need to look at a very small interval [x,x+dx] close to x; then we have

P[x ≤ X ≤ x+dx] =
∫ x+dx

x
f (z)dz ≈ f (x)dx. (2)

Thus, we can interpret f (x) as the “probability per unit length" in the vicinity of x.

2.1 Cumulative Distribution Function
For a continuous random variable X , one often starts the discussion with the cumulative distribution function
(c.d.f.), which is the function F(x) = P[X ≤ x]. It is closely related to the probability density function for X ,
f (x), as

F(x) = P[X ≤ x] =
∫ x

−∞

f (z)dz. (3)

Thus, one can describe a random variable X by its c.d.f., denoted by F(x), which then gives the probability
density function, f (x), as

f (x) =
dF(x)

dx
.

To connect to discrete probability, one might think of approximating a continuous random variable, X ,
as the set of probabilities for X being in one of a countably infinite set of intervals of length dx on the
real line. That is, the set of probabilities P[xk < X ≤ xk + dx] where xk = k dx for k ∈ Z. In this view,
P[X ≤ xi] = ∑ j≤iP[x j < X ≤ x j +dx]. Connecting this to the probability density function, f (x), we have

P[x j < X ≤ x j +dx]≈ f (x j)dx

for “small” dx, and
F(xi) = P[X ≤ xi]≈ ∑

j≤i
f (x j)dx.

Calculus comes in when we see the expression above is a Riemann sum. Taking the limit as dx goes to zero
yields the integral we see in (3).

2.2 Expectation and Variance
As in the discrete case, we define the expectation of a continuous r.v. as follows:

Definition 21.2 (Expectation). The expectation of a continuous r.v. X with probability density function f is

E[X ] =
∫

∞

−∞

x f (x)dx.
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Note that the integral plays the role of the summation in the discrete formula E[X ] =∑a aP[X = a]. Similarly,
we can define the variance as follows:

Definition 21.3 (Variance). The variance of a continuous r.v. X with probability density function f is

Var(X) = E
[
(X −E[X ])2]= E

[
X2]−E[X ]2 =

∫
∞

−∞

x2 f (x)dx −
(∫

∞

−∞

x f (x)dx
)2

.

Example

Let X be a uniform r.v. on the interval [0, ℓ]. Then intuitively, its expected value should be in the middle, ℓ
2 .

Indeed, we can use our definition above to compute

E[X ] =
∫ ℓ

0
x

1
ℓ

dx =
x2

2ℓ

∣∣∣∣ℓ
0
=

ℓ

2
,

as claimed. We can also calculate its variance using the above definition and plugging in the value E[X ] = ℓ
2

to get:

Var(X) =
∫ ℓ

0
x2 1

ℓ
dx−E[X ]2 =

x3

3ℓ

∣∣∣∣ℓ
0
−
(
ℓ

2

)2

=
ℓ2

3
− ℓ2

4
=

ℓ2

12
.

The factor of 1
12 here is not particularly intuitive, but the fact that the variance is proportional to ℓ2 should

come as no surprise. Like its discrete counterpart, this distribution has large variance.

2.3 Joint Distribution
Recall that for discrete random variables X and Y , their joint distribution is specified by the probabilities
P[X = a,Y = c] for all possible values a,c. Similarly, if X and Y are continuous random variables, then their
joint distributions are specified by the probabilities P[a ≤ X ≤ b,c ≤ Y ≤ d] for all a ≤ b, c ≤ d. Moreover,
just as the distribution of X can be characterized by its density function, the joint distribution of X and Y can
be characterized by their joint density.

Definition 21.4 (Joint Density). A joint density function for two random variable X and Y is a function
f : R2 → R satisfying:

1. f is non-negative: f (x,y)≥ 0 for all x,y ∈ R.

2. The total integral of f is equal to 1:
∫

∞

−∞

∫
∞

−∞
f (x,y)dxdy = 1.

Then the joint distribution of X and Y is given by:

P[a ≤ X ≤ b, c ≤ Y ≤ d] =
∫ d

c

∫ b

a
f (x,y)dxdy for all a ≤ b and c ≤ d.

In analogy with (2), we can connect the joint density f (x,y) with probabilities by looking at a very small
square [x,x+dx]× [y,y+dy] close to (x,y); then we have

P[x ≤ X ≤ x+dx, y ≤ Y ≤ y+dy] =
∫ y+dy

y

∫ x+dx

x
f (u,v)dudv ≈ f (x,y)dxdy. (4)

Thus we can interpret f (x,y) as the “probability per unit area" in the vicinity of (x,y).
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2.4 Independence
Recall that two discrete random variables X and Y are said to be independent if the events X = a and Y = c
are independent for every possible values a,c. We have a similar definition for continuous random variables:

Definition 21.5 (Independence for Continuous R.V.’s). Two continuous r.v.’s X ,Y are independent if the
events a ≤ X ≤ b and c ≤ Y ≤ d are independent for all a ≤ b and c ≤ d:

P[a ≤ X ≤ b, c ≤ Y ≤ d] = P[a ≤ X ≤ b] ·P[c ≤ Y ≤ d].

What does this definition say about the joint density of independent r.v.’s X and Y ? Applying (4) to connect
the joint density with probabilities, we get, for small dx and dy:

f (x,y)dxdy ≈ P[x ≤ X ≤ x+dx, y ≤ Y ≤ y+dy]

= P[x ≤ X ≤ x+dx] ·P[y ≤ Y ≤ y+dy] (by independence)

≈ fX(x)dx× fY (y)dy

= fX(x) fY (y)dxdy,

where fX and fY are the (marginal) densities of X and Y respectively. So we get the following result:

Theorem 21.1. The joint density of independent r.v.’s X and Y is the product of the marginal densities:

f (x,y) = fX(x) fY (y) for all x,y ∈ R.

3 Exponential Distribution
We have already seen one important continuous distribution, namely the uniform distribution. In this and
next sections we will see two more: the exponential distribution and the normal (or Gaussian) distribution.
These three distributions cover the vast majority of continuous random variables arising in applications.

The exponential distribution is a continuous version of the geometric distribution, which we have already
seen. Recall that the geometric distribution describes the number of tosses of a coin until the first Head
appears; the distribution has a single parameter p, which is the bias (Heads probability) of the coin. Of
course, in real life applications we are usually not waiting for a coin to come up Heads but rather waiting
for a system to fail, a clock to ring, an experiment to succeed, etc.

In such applications we are frequently not dealing with discrete events or discrete time, but rather with
continuous time: for example, if we are waiting for an apple to fall off a tree, it can do so at any time at
all, not necessarily on the tick of a discrete clock. This situation is naturally modeled by the exponential
distribution, defined as follows.

Definition 21.6 (Exponential Distribution). For λ > 0, a continuous random variable X with p.d.f.

f (x) =

{
λe−λx, if x ≥ 0,
0, otherwise,

is called an exponential random variable with parameter λ , and we write X ∼ Exp(λ ).

Note that by definition f (x) is non-negative. Moreover, we can check that it satisfies (1):∫
∞

−∞

f (x)dx =
∫

∞

0
λe−λxdx =−e−λx

∣∣∣∞
0
= 1,

so f (x) is indeed a valid probability density function. Figure 1 shows the probability density function for
the exponential distribution with a few different values of λ .
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Figure 1: The probability density function f (x) for the exponential distribution with λ = 0.5,1,2.

3.1 Mean and Variance of an Exponential Random Variable
Let us now compute the expectation and variance of X ∼ Exp(λ ).

Theorem 21.2. Let X be an exponential random variable with parameter λ > 0. Then

E[X ] =
1
λ

and Var(X) =
1

λ 2 .

Proof. We can calculate the expected value using integration by parts:

E[X ] =
∫

∞

−∞

x f (x)dx =
∫

∞

0
λxe−λxdx =−xe−λx

∣∣∣∞
0
+

∫
∞

0
e−λxdx = 0+

(
− e−λx

λ

)∣∣∣∣∞
0
=

1
λ
.

To compute the variance, we first evaluate E
[
X2

]
, again using integration by parts:

E
[
X2]= ∫

∞

−∞

x2 f (x)dx =
∫

∞

0
λx2e−λxdx =−x2e−λx

∣∣∣∞
0
+

∫
∞

0
2xe−λxdx = 0+

2
λ
E[X ] =

2
λ 2 .

The variance is therefore
Var(X) = E

[
X2]−E[X ]2 =

2
λ 2 −

1
λ 2 =

1
λ 2 ,

as claimed.

3.2 As Continuous Time Analog of Geometric Distribution
Like the geometric distribution, the exponential distribution has a single parameter λ , which characterizes
the rate at which events happen. Note that the exponential distribution satisfies, for any t ≥ 0,

P[X > t] =
∫

∞

t
λe−λxdx =−e−λx

∣∣∣∞
t
= e−λ t . (5)

In other words, the probability that we have to wait more than time t for our event to happen is e−λ t , which
is an exponential decay with rate λ .

Now consider a discrete-time setting in which we perform one trial every δ seconds (where δ is very small
— in fact, we will take δ → 0 to make time “continuous"), and where our success probability is p = λδ .
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Making the success probability proportional to δ makes sense, as it corresponds to the natural assumption
that there is a fixed rate of success per unit time, which we denote by λ = p/δ . In this discrete setting, the
number of trials until we get a success has the geometric distribution with parameter p, so if we let the r.v. Y
denote the time (in seconds) until we get a success, we have

P[Y > kδ ] = (1− p)k = (1−λδ )k, for any integer k ≥ 0.

Hence, for any t > 0, we have

P[Y > t] = P[Y > ( t
δ
)δ ] = (1−λδ )t/δ ≈ e−λ t , (6)

where this final approximation holds in the limit as δ → 0 with λ and t fixed. (We are ignoring the detail of
rounding t

δ
to an integer since we are taking an approximation anyway.)

Comparing the expression (6) with (5), we see that this distribution has the same form as the exponential
distribution with parameter λ , where λ (the success rate per unit time) plays an analogous role to p (the
probability of success on each trial) — though note that λ is not constrained to be ≤ 1. Thus we may view
the exponential distribution as a continuous time analog of the geometric distribution.

4 Normal Distribution
Another continuous distribution we will consider, and by far the most prevalent in applications, is called the
normal or Gaussian distribution. It has two parameters, µ and σ2, which are the mean and variance of the
distribution, respectively.

Definition 21.7 (Normal Distribution). For any µ ∈ R and σ > 0, a continuous random variable X with
p.d.f.

f (x) =
1√

2πσ2
e−(x−µ)2/(2σ2)

is called a normal random variable with parameters µ and σ2, and we write X ∼ N(µ,σ2). In the special
case µ = 0 and σ = 1, X is said to have the standard normal distribution.

Let’s first check that this is a valid definition of a probability density function. Clearly f (x) ≥ 0 from the
definition. For condition (1): ∫

∞

−∞

f (x)dx =
1√

2πσ2

∫
∞

−∞

e−(x−µ)2/(2σ2)dx = 1. (7)

The fact that this integral evaluates to 1 is a routine exercise in (multivariable) integral calculus, and is left
as an exercise .

A plot of the p.d.f. f reveals a classical “bell-shaped" curve, centered at (and symmetric around) x = µ , and
with “width" determined by σ . Figure 2 shows that the normal density with different values of µ and σ are
very similar to each other. Indeed, the normal distribution has the following nice property with respect to
shifting and rescaling.

Lemma 21.1. If X ∼ N(µ,σ2), then Y = X−µ

σ
∼ N(0,1). Equivalently, if Y ∼ N(0,1), then

X = σY +µ ∼ N(µ,σ2).

Proof. Given that X ∼ N(µ,σ2), we can calculate the distribution of Y = X−µ

σ
as:

P[a ≤ Y ≤ b] = P[σa+µ ≤ X ≤ σb+µ] =
1√

2πσ2

∫
σb+µ

σa+µ

e−(x−µ)2/(2σ2)dx =
1√
2π

∫ b

a
e−y2/2dy,
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Figure 2: The density function for the normal distribution with several different choices for µ and σ2.

by a simple change of variable x = σy+µ in the integral. Hence Y is indeed standard normal. Note that Y
is obtained from X just by shifting the origin to µ and scaling by σ .

4.1 Mean and Variance of a Normal Random Variable
Let us now calculate the expectation and variance of a normal random variable.

Theorem 21.3. For X ∼ N(µ,σ2),

E[X ] = µ and Var(X) = σ
2.

Proof. First consider the case when X ∼ N(0,1). By definition, its expectation is

E[X ] =
∫

∞

−∞

x f (x)dx =
1√
2π

∫
∞

−∞

xe−x2/2dx =
1√
2π

(∫ 0

−∞

xe−x2/2dx+
∫

∞

0
xe−x2/2dx

)
= 0.

The last step follows from the fact that the function e−x2/2 is symmetrical about x = 0, so the two integrals
are the same except for the sign. For the variance, we have

Var(X) = E
[
X2]−E[X ]2 =

1√
2π

∫
∞

−∞

x2e−x2/2dx

=
1√
2π

(
− xe−x2/2)∣∣∣∞

−∞

+
1√
2π

∫
∞

−∞

e−x2/2dx

=
1√
2π

∫
∞

−∞

e−x2/2dx = 1.

In the first line here we used the fact that E[X ] = 0; in the second line we used integration by parts; and in the
last line we used (7) in the special case µ = 0, σ = 1. So the standard normal distribution has expectation
E[X ] = 0 = µ and variance Var(X) = 1 = σ2.

Now consider the general case when X ∼ N(µ,σ2). By Lemma 21.1, we know that Y = X−µ

σ
is a standard

normal random variable, so E[Y ] = 0 and Var(Y ) = 1, as we have just established above. Therefore, we can
read off the expectation and variance of X from those of Y . For the expectation, using linearity, we have

0 = E[Y ] = E
[

X −µ

σ

]
=

E[X ]−µ

σ
,
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and hence E[X ] = µ . For the variance we have

1 = Var(Y ) = Var
(

X −µ

σ

)
=

Var(X)

σ2 ,

and hence Var(X) = σ2.

The bottom line, then, is that the normal distribution has expectation µ and variance σ2. This explains the
notation for the parameters µ and σ2.

The fact that the variance is σ2 (so that the standard deviation is σ ) explains our earlier comment that σ

determines the “width” of the normal distribution. Namely, by Chebyshev’s inequality, a constant fraction
of the distribution lies within distance (say) 2σ of the expectation µ .

Note: The above analysis shows that, by means of a simple origin shift and scaling, we can relate any normal
distribution to the standard normal. This means that, when doing computations with normal distributions,
it’s enough to do them for the standard normal. For this reason, books and online sources of mathematical
formulas usually contain tables describing the density of the standard normal. From this, one can read off
the corresponding information for any normal r.v. X ∼ N(µ,σ2) from the formula

P[X ≤ a] = P[Y ≤ a−µ

σ
],

where Y is standard normal.

The normal distribution is ubiquitous throughout the sciences and the social sciences, because it is the
standard model for any aggregate data that results from a large number of independent observations of the
same random variable (such as the weights of mosquitos in Berkeley, or the observational error in a physical
experiment). Such data, as is well known, tends to cluster around its mean in a “bell-shaped" curve, with the
correspondence becoming more accurate as the number of observations increases. A theoretical explanation
of this phenomenon is the Central Limit Theorem, which we discuss in Section 5.

4.2 Sum of Independent Normal Random Variables
An important property of the normal distribution is that the sum of independent normal random variables is
also normally distributed. We begin with the simple case when X and Y are independent standard normal
random variables. In this case the result follows because the joint distribution of X and Y is rotationally
symmetric. The general case follows from the translation and scaling property of normal distribution in
Lemma 21.1.

Theorem 21.4. Let X ∼ N(0,1) and Y ∼ N(0,1) be independent standard normal random variables, and
suppose a,b ∈ R are constants. Then Z = aX +bY ∼ N(0,a2 +b2).

Proof. 3 Since X and Y are independent, by Theorem 21.1 we know that the joint density of (X ,Y ) is

f (x,y) = f (x) · f (y) =
1

2π
e−(x2+y2)/2.

The key observation is that f (x,y) is rotationally symmetric around the origin, i.e., f (x,y) only depends on
the value x2 + y2, which is the distance of the point (x,y) from the origin (0,0); see Figure 3.

3The following proof and figures are adapted from “Why Is the Sum of Independent Normal Random Variables Normal?” by
B. Eisenberg and R. Sullivan, Mathematics Magazine, Vol. 81, No. 5.

CS 70, Spring 2023, Note 21 9



Figure 3: The joint density function f (x,y) = 1
2π

e−(x2+y2)/2 is rotationally symmetric.

Thus, f (T (x,y)) = f (x,y) where T is any rotation of the plane R2 about the origin. It follows that for any
set A ⊆ R2,

P[(X ,Y ) ∈ A] = P[(X ,Y ) ∈ T (A)] (8)

where T is a rotation of R2. Now given any t ∈ R, we have

P[Z ≤ t] = P[aX +bY ≤ t] = P[(X ,Y ) ∈ A]

where A is the half plane {(x,y) | ax+by ≤ t}. The boundary line ax+by = t lies at a distance d = t√
a2+b2

from the origin. Therefore, as illustrated in Figure 4, the set A can be rotated into the set

T (A) =
{
(x,y)

∣∣∣∣ x ≤ t√
a2 +b2

}
.

By (8), this rotation does not change the probability:

P[Z ≤ t] = P[(X ,Y ) ∈ A] = P[(X ,Y ) ∈ T (A)] = P
[

X ≤ t√
a2 +b2

]
= P

[√
a2 +b2 X ≤ t

]
.

Since the equation above holds for all t ∈ R, we conclude that Z has the same distribution as
√

a2 +b2 X .
Since X has standard normal distribution, we know by Lemma 21.1 that

√
a2 +b2 X has normal distribution

with mean 0 and variance a2 +b2. Hence we conclude that Z = aX +bY also has normal distribution with
mean 0 and variance a2 +b2.

The general case now follows easily from Lemma 21.1 and Theorem 21.4.
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Figure 4: The half plane ax+by ≤ t is rotated into the half plane x ≤ t√
a2+b2 .

Corollary 21.1. Let X ∼ N(µX ,σ
2
X) and Y ∼ N(µY ,σ

2
Y ) be independent normal random variables. Then

for any constants a,b ∈ R, the random variable Z = aX + bY is also normally distributed with mean µ =
aµX +bµY and variance σ2 = a2σ2

X +b2σ2
Y .

Proof. By Lemma 21.1, Z1 = (X −µX)/σX and Z2 = (Y −µY )/σY are independent standard normal random
variables. We can write:

Z = aX +bY = a(µX +σX Z1)+b(µY +σY Z2) = (aµX +bµY )+(aσX Z1 +bσY Z2).

By Theorem 21.4, Z′ = aσX Z1+bσY Z2 is normally distributed with mean 0 and variance σ2 = a2σ2
X +b2σ2

Y .
Since µ = aµX +bµY is a constant, by Lemma 21.1 we conclude that Z = µ+Z′ is a normal random variable
with mean µ and variance σ2, as desired.

5 The Central Limit Theorem
Recall from an earlier note the Law of Large Numbers for i.i.d. random variables Xi’s: it says that the
probability of any deviation ε > 0, however small, of the sample average Sn

n , where Sn = ∑
n
i=1 Xi, from the

mean tends to zero as the number of observations n in our average tends to infinity. Thus, by taking n large
enough, we can make the probability of any given deviation as small as we like.

Actually we can say something much stronger than the Law of Large Numbers: namely, the distribution of
the sample average Sn

n , for large enough n, looks like a normal distribution with mean µ and variance σ2

n .
(Of course, we already know that these are the mean and variance of Sn

n ; the point is that the distribution
becomes normal!) The fact that the standard deviation decreases with n (specifically, as σ√

n ) means that the
distribution approaches a sharp spike at µ .

Recall from the last section that the density of the normal distribution is a symmetrical bell-shaped curve
centered around the mean µ . Its height and width are determined by the standard deviation σ as follows:
the height at the mean x = µ is 1√

2πσ2 ≈ 0.4
σ

; 50% of the mass is contained in the interval of width 0.67σ

either side of the mean, and 99.7% in the interval of width 3σ either side of the mean. (Note that, to get the
correct scale, deviations are on the order of σ rather than σ2.)

To state the Central Limit Theorem precisely (so that the limiting distribution is a constant rather than
something that depends on n), we standardize Sn

n as

Sn
n −µ

σ√
n

=
Sn −nµ

σ
√

n
.

The Central Limit Theorem then says that the distribution of Sn−nµ

σ
√

n converges to the standard normal distri-
bution.
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Figure 5: Buffon’s Needle.

Theorem 21.5 (Central Limit Theorem). Let X1,X2, . . . be a sequence of i.i.d. random variables with com-
mon finite expectation E[Xi] = µ and finite variance Var(Xi) = σ2. Let Sn = ∑

n
i=1 Xi. Then, the distribution

of Sn−nµ

σ
√

n converges to N(0,1) as n → ∞. In other words, for any constant c ∈ R,

P
[

Sn −nµ

σ
√

n
≤ c

]
→ 1√

2π

∫ c

−∞

e−x2/2dx as n → ∞.

The Central Limit Theorem is a very striking fact. What it says is the following: If we take an average of n
observations of any arbitrary r.v. X , then the distribution of that average will be a bell-shaped curve centered
at µ = E[X ]. Thus all trace of the distribution of X disappears as n gets large: all distributions, no matter
how complex,4 look like the normal distribution when they are averaged. The only effect of the original
distribution is through the variance σ2, which determines the width of the curve for a given value of n, and
hence the rate at which the curve shrinks to a spike.

6 Optional: Buffon’s Needle
Here is a simple yet interesting application of continuous random variables to the analysis of a classical
procedure for estimating the value of π; this is known as Buffon’s needle problem, after its 18th century
inventor Georges-Louis Leclerc, Comte de Buffon.

As illustrated in Figure 5, we are given a needle of length ℓ, and a board ruled with horizontal lines at
distance ℓ apart. The experiment consists of throwing the needle randomly onto the board and observing
whether or not it crosses one of the lines. We shall see below that (assuming a perfectly random throw)
the probability of this event is exactly 2/π . This means that, if we perform the experiment many times and
record the proportion of throws on which the needle crosses a line, then the Law of Large Numbers tells us
that we will get a good estimate of the quantity 2/π , and therefore also of π; and we can use Chebyshev’s
inequality as in the other estimation problems we considered in an earlier note to determine how many
throws we need in order to achieve specified accuracy and confidence.

6.1 Integrating a Joint Density Function
To analyze the experiment, let’s consider what random variables are in play. Note that the position where the
needle lands is completely specified by two random variables: the vertical distance Y between the midpoint

4We do need to assume that the mean and variance of X are finite.
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of the needle and the closest horizontal line, and the angle Θ between the needle and the vertical. The r.v. Y
ranges between 0 and ℓ/2, while Θ ranges between −π/2 and π/2. Since we assume a perfectly random
throw, we may assume that their joint distribution has density f (y,θ) that is uniform over the rectangle
[0, ℓ/2]× [−π/2,π/2]. Since this rectangle has area πℓ

2 , the density should be

f (y,θ) =

{
2

πℓ , for (y,θ) ∈ [0, ℓ/2]× [−π/2,π/2],
0, otherwise.

(9)

Equivalently, Y and Θ are independent random variables, each uniformly distributed in their respective
range. To check our answer, let’s verify that the integral of this density over all possible values is indeed 1:

∫
∞

−∞

∫
∞

−∞

f (y,θ)dydθ =
∫

π/2

−π/2

∫ ℓ/2

0

2
πℓ

dydθ =
∫

π/2

−π/2

2y
πℓ

∣∣∣∣ℓ/2

0
dθ =

∫
π/2

−π/2

1
π

dθ =
θ

π

∣∣∣∣π/2

−π/2
= 1.

This is an analog of (1) for our joint distribution; rather than the area under the curve f (x), we are now
computing the area under the “surface" f (y,θ).

Now let E denote the event that the needle crosses a line. How can we express this event in terms of the
values of Y and Θ? Well, by elementary geometry the vertical distance of the endpoint of the needle from
its midpoint is ℓ

2 cosΘ, so the needle will cross the line if and only if Y ≤ ℓ
2 cosΘ. Therefore we have

P[E] = P[Y ≤ ℓ
2 cosΘ] =

∫
π/2

−π/2

∫ (ℓ/2)cosθ

0
f (y,θ)dydθ .

Substituting the density f (y,θ) from (9) and performing the integration we get

P[E] =
∫

π/2

−π/2

∫ (ℓ/2)cosθ

0

2
πℓ

dydθ =
∫

π/2

−π/2

2y
πℓ

∣∣∣∣(ℓ/2)cosθ

0
dθ =

1
π

∫
π/2

−π/2
cosθdθ =

1
π

sinθ

∣∣∣π/2

−π/2
=

2
π
.

This is exactly what we claimed at the beginning of the section!

6.2 Using Indicator Random Variables
Suppose we toss a unit length needle on (an infinite) board ruled with horizontal lines spaced at unit length
apart. We wish to calculate the chance that the needle intersects a horizontal line. Let X be a random variable
defined as the number of intersections of such a needle:

X =

{
1, if the needle intersects a line,
0, otherwise.

Here we are assuming that the case where the needle lies perfectly on two lines cannot happen, since the
probability of this particular event is 0. Since X is an indicator random variable, E[X ] = P[X = 1]. We wish
to show that P[X = 1] = 2

π
.

Suppose we were tossing a needle of length 2, and let Z be the random variable representing the number
of times such a needle intersects horizontal lines on the plane. We can “split" the needle into two length-1
parts and get Z = I1 + I2, where Ii is 1 if segment i of the needle intersects and 0 otherwise. Thus, E[Z] =
E[I1 + I2] =E[I1]+E[I2] = 2E[X ], since each segment is of unit length. A similar argument holds if we split a
unit length needle into m equal segments, so that X = I1+ · · ·+Im, where Ii is 1 if segment i (which has length
1
m ) intersects a line and 0 otherwise. We have that E[X ] = E[I1 + · · ·+ Im] = E[I1]+ · · ·+E[Im]. But each of
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the E[Ii]’s are equal, so we get E[X ] = mE[Ii], which implies E[Ii] = (length of segment i) ·E[X ]. Thus, if
we drop a needle of an arbitrary length ℓ and let Y be the number of intersections, then E[Y ] = ℓ ·E[X ].

Now, as shown in Figure 6, consider a “noodle” comprised of two needles of arbitrary lengths ℓ1 and ℓ2
(with corresponding random variables Y1 and Y2 for the number of intersections), where the needles are
connected by a rotating joint. We can conclude by linearity of expectation that E[Y1 +Y2] = E[Y1]+E[Y2].
In general, we can have a noodle comprised of n needles of arbitrary lengths ℓ1, . . . , ℓn, in which case
E[Y1 + · · ·+Yn] = E[Y1]+ · · ·+E[Yn] = ℓ1E[X ]+ · · ·+ ℓnE[X ] = (ℓ1 + · · ·+ ℓn) ·E[X ]. Hence, we conclude
that the expected number of intersections of a noodle is (total length of the noodle)×E[X ].

Figure 6: A “Noodle” consisting of 5 needles.

Figure 7: A circle with a unit length diameter always has two intersections.

To determine E[X ], we utilize the following observation: since we are allowed to string together needles at
connected rotating joints and since each needle can be arbitrarily short, we are free to pick any shape. As
illustrated in Figure 7, consider a circle with a unit length diameter (and therefore circumference π). Such
a shape must always intersect a horizontal line twice, which implies E[number of circle intersections] =
π ·E[X ] = 2, and thus E[X ] = P[X = 1] = 2

π
.
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