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1 Pledge

Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and respect for
others.

In particular, I acknowledge that:

• I alone am taking this exam. Other than with the instructor and GSI, I will not have any verbal, written, or
electronic communication about the exam with anyone else while I am taking the exam or while others are
taking the exam.

• I will not have any other browsers open while taking the exam.

• I will not refer to any books, notes, or online sources of information while taking the exam, other than what
the instructor has allowed.

• I will not take screenshots, photos, or otherwise make copies of exam questions to share with others.

Signed:

(Rewritten by Alec Li, as the original solutions have mistakes and unclear answers.)
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2 Long Ago

1. A∨¬(B ∧C ) ≡ A∨ (¬B ∨¬C )

 True ⃝ False

Answer: Using De Morgan’s law, we have ¬(B∧C ) ≡¬B∨¬C , meaning A∨¬(B∧C ) ≡ A∨(¬B∨¬C ), as claimed.

2. ¬∀x∃yQ(x, y) ≡∃x∃y¬Q(x, y)

⃝ True  False

Answer: Distributing the negation, we must negate ∀ to become ∃, and vice versa. This means that the LHS is
actually equivalent to ∃x∀y¬Q(x, y).

3. P =⇒ Q is logically equivalent to ¬Q ∨P .

⃝ True  False

Answer: The actual equivalence is P =⇒ Q ≡¬P ∨Q, as shown in lecture and in the notes.

4. Consider a stable matching instance where S is the job optimal stable pairing. Consider a run of the job-propose
matching algorithm, where one candidate c rejects a job j that they should not have in one step. That is, c
receives an offer from j and j ′ chooses j ′ instead of j , when j was ahead of j ′ in their preference list.

Let P be the resulting pairing.

(a) For every instance, job j cannot do better in P than in S. (Better means get a partner who they prefer
more.)

 True ⃝ False

Answer: There are two cases: ( j ,c) ∈ S or ( j ,c) ∉ S.

Case 1: ( j ,c) ∈ S. Since S is job-optimal, c is the best candidate in any stable matching for j ; since at some
point both j and j ′ propose to c, with c rejecting j ’s offer, j can only do worse by proposing to a next
(worse) candidate. This means that j cannot do better in P than in S.

Case 2: ( j ,c) ∉ S. Since j was not paired with c in the job-optimal pairing, there are now two other choices:
either j is paired with a candidate they like more than c , or j is paired with a candidate they like less than c .

If in the job-optimal matching j is paired with a candidate c ′ they like more than c , then in the job-propose
algorithm, j would have proposed to c ′ before c, and as such never would have gotten to propose to c in
the first place, for c to make the incorrect rejection. This means that this case cannot possibly happen.

If in the job-optimal matching j is paired with a candidate c ′ they like less than c, then it must be the case
that c rejects j for another job at some point in the future anyways—the incorrect rejection sorts itself out
in the future. This means that S and P would end up being the same pairing, and j does exactly the same
in P as it does in S.

With all of this together, we’ve shown that j cannot possibly do better in P than in S.

(b) Every candidate other than c does as well or better in P than in S.

⃝ True  False

Answer: Since c rejects j , it could be the case that whatever job c ends up with was first on another
candidate’s preference list. In this case, c stole the other candidate’s first preference, and the other candidate
does worse.
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For a concrete example, consider the following instance:

c j > j ′
c ′ j ′ > j

j c > c ′
j ′ c > c ′

The correct job-propose algorithm would proceed as follows:

Day 1
c j ,��j

′
c ′

=⇒
Day 2
c j
c ′ j ′

With c incorrectly rejecting j , the algorithm would proceed as follows:

Day 1
c ��j , j ′
c ′

=⇒
Day 2
c j ′
c ′ j

Here, c ′ ends up with a less preferred job in the second case.

(c) Every job other than j does as well or better in P than in S.

⃝ True  False

Answer: Consider the following instance:

c j ′′ > j > j ′
c ′ j > j ′′ > j ′
c ′′ j > j ′ > j ′′

j c > c ′′ > c ′
j ′ c > c ′ > c ′′
j ′′ c ′′ > c ′ > c

The correct job-propose algorithm would proceed as follows:

Day 1
c j ,��j

′
c ′
c ′′ j ′′

=⇒
Day 2
c j
c ′ j ′
c ′′ j ′′

With c incorrectly rejecting j , the algorithm would proceed as follows:

Day 1
c ��j , j ′
c ′
c ′′ j ′′

=⇒
Day 2

c j ′
c ′

c ′′ ��j
′′, j

=⇒
Day 3
c j ′
c ′ j ′′
c ′′ j

Looking at j ′′, it now ends up with c ′, which it prefers less than its optimal c ′′.

Crucially here, while the specific set of preference lists may seem very arbitrary, we can notice that when
c rejects j for j ′, job j now has to re-propose to a new candidate c ′′. If this new candidate finds that j is
more desirable, we’ve now kicked off another job that would have ended up with c ′′ (namely, j ′′). If j ′′ has
c ′′ first on their preference list, then this means that j ′′ is forced to take a worse candidate.

This is the key idea when constructing the example here, and should be the main focus; other details in the
preference lists are not as important.

3 Graphs

1. Consider a graph on n vertices with exactly one cycle and m edges. What is the number of connected
components? (Hint: m ≤ n.)
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n −m +1

Answer: To find the number of connected components, it can be helpful to relate this graph to a tree, as a tree
has exactly one connected component. Since we are given that the graph contains exactly one cycle, we can
remove one edge from the cycle to eliminate the cycle from the graph. This will not change the number of
connected components.

Next, we want to see how many edges we need to add in order to turn the graph into a tree. Since a tree with n
vertices will always have exactly n−1 edges, we must add n−m new edges to our graph: (m−1)+(n−m) = n−1,
keeping in mind that we had to remove one edge to eliminate the cycle earlier.

Since each edge must connect two different components together, each new edge reduces the number of
components by 1. This means that we removed n −m components and ended up with 1 component, so we
originally had n −m +1 components.

2. For a tree on n vertices, what is the expected number of connected components if each edge is deleted with
probability 1

3 ?

1+ n −1

3

Answer: There are a total of n −1 edges in a tree with n vertices, and each edge is removed with probability 1
3 .

We can thus model the number of deleted edges as Bin(n −1, 1
3 ), with expected value n−1

3 .

Each removed edge adds a new component, and since we started with one component, we end up with an
expected 1+ n−1

3 connected components.and he’s particularly stubborn in using the same

3. If we delete every edge with probability 1
2 from an Eulerian graph on n vertices, what is the expected number

of odd degree vertices in the remaining graph?

n

2

Answer: A preliminary identity we need to establish is that(
n

0

)
+

(
n

2

)
+

(
n

4

)
+·· · =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+·· · .

A nice proof is by expanding (1+ (−1))n using the binomial theorem:

(1+ (−1))n =
n∑

k=0

(
n

k

)
(1)k (−1)n−k .

The positive values in the summation are values where n−k are even, and the negative values are where n−k
is odd. Since n is fixed, this splits the binomial coefficients by whether k is even or odd. Since this sum is 0, it
must be the case that the identity claimed above is true.

Moving on to the question on hand, we can split up the expected value using indicators Xi denoting whether
the i th vertex has an odd degree after edges are removed. Now, looking at a specific vertex, the number of
edges removed is distributed as Bin(d , 1

2 ), where d is the initial degree of the vertex.
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Further, the final degree of the vertex is even if the number of incident edges removed is even, and similarly,
the final degree of the vertex is odd if the number of incident edges removed is odd. This means that we have

P
[
even degree

]= (
d

0

)(
1

2

)0(1

2

)d−0

+
(

d

2

)(
1

2

)2(1

2

)d−2

+
(

d

4

)(
1

2

)4(1

2

)d−4

+·· ·

=
(

1

2

)d
((

d

0

)
+

(
d

2

)
+

(
d

4

)
+·· ·

)

P
[
odd degree

]= (
d

1

)(
1

2

)1(1

2

)d−1

+
(

d

3

)(
1

2

)3(1

2

)d−3

+
(

d

5

)(
1

2

)5(1

2

)d−5

+·· ·

=
(

1

2

)d
((

d

1

)
+

(
d

3

)
+

(
d

5

)
+·· ·

)

Using the identity stated and proven earlier, we can arrive at the conclusion that both of these probabilities
are equal—and in fact, since a vertex degree can only be even or odd, these probabilities are both 1

2 .

This means that E[Xi ] = 1
2 , and the final expectation is

∑n
i=1E[Xi ] = n

2 .

Note: It doesn’t actually matter whether the graph is Eulerian or not; the combinatorial identity holds regardless
of whether n is even or odd, and we never used the fact that the degrees d were even in the solution either.

4. Every simple cycle is 2-colorable.

⃝ True  False

Answer: Any cycle of odd length is not 2-colorable. For example, consider the cycle on 3 vertices (i.e. a
triangle)—it is impossible to color this graph with 2 colors (this cycle is also K3, the complete graph on three
vertices, and any complete graph Kn can only be colored with n colors).

4 Mostly Modular

1. For all nonzero x, y ∈N, gcd(x, y mod x) = gcd(x, y).

 True ⃝ False

Answer: This is an identity that the Euclidean algorithm relies upon for finding GCDs efficiently. To see how
this holds, suppose we write y = qx + r , where r = y mod x and q is an integer.

Looking at the forward direction of the equality, suppose d = gcd(x, y mod x); this means that d divides x
and r . As such, d must also divide qx + r , which is equal to y—hence, d divides x and y .

Looking at the backward direction of the equality, suppose d = gcd(x, y); this means that d divides x and y .
As such, d must also divide qx, and since r = y −qx, it must also divide r —hence, d divides x and y mod x.

Combined, the claim that gcd(x, y mod x) = gcd(x, y) must be true.

2. For all nonzero x, y ∈N, gcd(x, x mod y) = gcd(x, y).

⃝ True  False

Answer: This is the incorrect form of the identity in the previous part. As a counterexample, take x = 8 and
y = 3. We have gcd(x, x mod y) = gcd(8,2) = 2, while gcd(x, y) = gcd(8,3) = 1.

3. Give an example of positive integers for a and n where

(1 ·2 · · · · · (n −1))an−1 ̸= (1 ·2 · · · · · (n −1)) (mod n).
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a = 2

n = 4

Answer: A proof of the equality is given in the proof of FLT, but the important thing is the requirement that
gcd(a,n) = 1. When a and n are not relatively prime, this does not hold—an example could be for a = 2, n = 4,
among others.

4. Let S = {x : x ∈ {1, . . . ,34} and gcd(x,35) = 1}

(a) What is the size of the set S?

24

Answer: Out of the 34 integers in the set, we have 4 multiples of 7 (from 7 ·1 to 7 ·4 and 6 multiples of 5
(from 5 ·1 to 5 ·6). Subtracting these, we have 34−4−6 = 24.

(b) What is a|S|+1 (mod 35) for a ∈ S?

a (mod 35)

Answer: Recalling the proof of RSA with N = pq , and ed ≡ 1 (mod (p −1)(q −1)), we know that

aed ≡ a1+k(p−1)(q−1) ≡ a (mod pq).

Here, notice that 24 = 6 ·4 = (7−1)(5−1) from our calculation in part (a), so what we’re actually trying to
find here is

a|S|+1 ≡ a24+1 ≡ a(7−1)(5−1)+1 (mod 7 ·5),

which we know to be equal to a.

(c) What is a|S|+1 (mod 35) for a ∉ S?

a (mod 35)

Answer: Note that in the previous part, we made no assumptions on whether a was in the set S or
not—RSA works for any message a, as it will always be mapped to a number in {0, . . . ,34} under mod 35.

5. What is 18−1 (mod 13)?

8 (mod 13)
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Answer: We can first simplify 18−1 ≡ 5−1 (mod 13), and noting that 5 ·8 = 40 ≡ 1 (mod 13), we find that
5−1 ≡ 8 (mod 13).

One can also arrive at the same answer through EGCD, though with small numbers like these, it can be a lot
quicker to iterate through possible multiples of 5.

6. If x ≡ 1 (mod 13) and x ≡ 0 (mod 18) then what is x (mod 234)? (Note: 234 = 18×13)

144 (mod 234)

Answer: We can apply CRT directly here; with a system of two equations x ≡ a (mod p) and x ≡ b (mod q),
the solution is x ≡ aq(q−1 mod p)+bp(p−1 mod q) (mod pq).

One thing to note here is that one of the coefficients is 0, so we do not need to calculate the second term. The
first (and only) term is thus 1 ·18 ·(18−1 mod 13) ≡ 1 ·18 ·8 ≡ 144 (mod 234), using our result from the previous
question.

7. For primes p and q , where e ≡ d−1 (mod (p −1)(q −1))?

(a) What is aed (mod q)? (Answer cannot use e or d , but may use numbers, a, p, or q .)

a (mod q)

Answer: This is just RSA; encryption is E(x) = xe , and decryption is D(x) = xd , meaning the decrypted
message is aed ≡ a (mod pq). This would then imply that aed ≡ a (mod q) as well (this is an intermedi-
ate step in the proof of RSA).

(b) Find an x ≤ pq , where p | (aed −x). (Answer is an expression that may use a, p, and q .)

a

Answer: Similarly, this is also just RSA; rewriting the expression in modular arithmetic, we have aed −x ≡
0 (mod p), or aed ≡ x (mod p). We can now apply the same logic as previous part—the result after
encryption and decryption is the original message a.

5 Polynomials

1. Given a polynomial, x3 + a2x2 + a1x + a0 modulo 7 with roots at 3, 1, and 6. What is a0? (Notice that the
coefficient of x3 is 1.)

3 (mod 7)

Answer: Expressed as a product of factors, the polynomial is (x −3)(x −1)(x −6). To find a0, all we need to do
is plug in x = 0 to eliminate all other terms—this gives us

(0−3)(0−1)(0−6) = (−3)(−1)(−6) =−18 ≡ 3 (mod 7).
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2. Working mod 5, find a polynomial modulo 5 of degree 2 that has roots at 0 and 3, and goes through the point
(2,3).

(x −0)(x −3)

Answer: We know that the polynomial must have the factor (x −0)(x −3) because of its two known zeroes.
In order for us to ensure that the polynomial goes through the point (2,3), we can plug in x = 2 and rescale
to match. We have (2−0)(2−3) =−2 ≡ 3 (mod 5), so we do not need to do any rescaling, and our original
polynomial is our final answer.

Alternatively, we could have directly used Lagrange interpolation on the points (0,0), (3,0), and (2,3). One
thing to notice here is that our final polynomial will be of the form

y1∆x1 (x)+ y2∆x2 (x)+ y3∆x3 (x) = 0 ·∆0(x)+0 ·∆3(x)+3 ·∆2(x) = 3∆2(x).

Thus, the only intermediate polynomial we need to calculate is

∆2(x) = (x −0)(x −3)

(2−0)(2−3)
= (−2)−1(x −0)(x −3) ≡ 2(x −0)(x −3) (mod 5).

Noting that 3 ·2 = 6 ≡ 1 (mod 5), the coefficients cancel out and we’re just left with (x −0)(x −3).

3. Consider that one encodes a message of n numbers modm by forming a degree n −1 polynomial using
the numbers as coefficients, and sending 2n −1 points. If each point is erased with probability 1

2 , what is
the probability that the original message can be reconstructed? (Hint: each pattern of erasures is equally
probable.)

1

2

Answer: We need at least n points in order to reconstruct a degree n−1 polynomial. This means that we need
at least a majority of the points to be successfully sent through—that is, at the minimum we can have n −1
erasures and n valid points.

With a symmetry argument, we can see that this occurs with probability 1
2 . The symmetry arises from the

presence of a bijection between the outcomes where a majority of points are erased and the outcomes where
a majority of points are sent. More specifically, for each outcome where k points are erased, there will be an
outcome with 2n −1−k points erased, just by swapping whether each point is erased or successfully sent.
This means that the final answer is 1

2 .

In another perspective, to see the symmetry a little more rigorously, notice that the probability we want is
P[X ≥ n], where X denotes the number of valid points. This summation becomes

P[X ≥ n] =
2n−1∑
k=n

(
2n −1

k

)
=

(
2n −1

n

)
+

(
2n −1

n +1

)
+

(
2n −1

n +2

)
+·· ·+

(
2n −1

2n −2

)
+

(
2n −1

2n −1

)
.

With the identity
(a+b

a

)= (a+b
b

)
, we can see that

(2n−1
n

)= (2n−1
n−1

)
,
(2n−1

n+1

)= (2n−1
n−2

)
, etc. This means the summation

is equivalent to(
2n −1

n −1

)
+

(
2n −1

n −2

)
+

(
2n −1

n −3

)
+·· ·+

(
2n −1

1

)
+

(
2n −1

0

)
=

n−1∑
k=0

(
2n −1

k

)
=P[X < n].
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This means that P[X ≥ n] =P[X < n], and since they add to 1, both probabilities must be equal to 1
2 . This is

exactly the symmetry mentioned earlier, and the aforementioned combinatorial identity is how we arrive at
the bijection for the symmetry in the first place.

6 Countability/Computability

1. For every pair of distinct rational numbers there is a rational number in between them.

 True ⃝ False

Answer: Simply taking the average of two rational numbers will give another rational number between them.
Formally, if x = a

b and y = c
d , where a,b,c,d are all integers, we have

x + y

2
= 1

2

( a

b
+ c

d

)
= ad +bc

2bd
,

which is also a rational number.

2. The rational numbers are uncountable.

⃝ True  False

Answer: False

It was shown in the notes and in lecture that the rational numbers are countable—we can enumerate all
rational numbers by enumerating all pairs (a,b) of natural numbers, each pair forming the rational number
a
b . It is guaranteed that every single (nonnegative) rational number is listed through this process (as we are
going through all possibilities of numerators and denominators); to include all negative rational numbers as
well, we can just list a

b and − a
b at once as we enumerate.

3. There is a program that takes a program P , an input x, and a number n and determines whether P run on
input x ever writes to memory location n.

⃝ True  False

Answer: Suppose the program does exist, called Writes. We can then argue that we can reduce this to the
Halting problem as follows:

1 def TestHalt(P, x):
2 def Q(y):
3 P(x) # run P on input x from outer function; we can shift all memory accesses up by 1
4 write_to_memory_address(0) # if P halts, write to memory address 0
5 return Writes(Q, 0, 0) # check whether Q writes to memory address 0

This program defines an inner function Q that first runs P(x) (redirecting all memory accesses to avoid writing
to memory address 0), then writes to memory address 0. Note that this write only occurs if P(x) halts; if P(x)
loops forever, it will never write to the memory address. The memory address redirection makes it so that we
never have a false memory write.

This means that we can use Writes to check whether any program halts or not, just by passing in this inner
function. Since we already know that TestHalt can never exist, and we’ve just shown how we can construct
TestHalt using Writes, we know that Writes cannot exist in the first place.

4. There is a program that takes a program P , an input x, and a number n and determines whether P run on
input x ever writes to any memory location i ≥ n.

 True ⃝ False

Answer: The difference between this question and the one previous is that we only have a finite range of
memory locations that a program can write to if it loops forever. We can keep track of this, along with the
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program counter, to confidently tell whether or not the program will ever write to a memory address ≥ n—we
can stop early once we’ve detected a write to an address ≥ n, or if we’ve detected a loop consisting of a subset
of only the first n memory addresses.

5. A program “knows” a real number if it takes an integer n and outputs the nth bit of the real number. (Note:
positive values of n signify to the left of the decimal point, and negative ones to the right.)

(a) There is a program that knows π.

 True ⃝ False

Answer: The key here is that we can always get the nth bit of π in finite time—many approximation
methods exist that can do this.

(b) For every real number x, there is a program that knows x.

⃝ True  False

Answer: There are more real numbers than there are programs, as the reals are uncountable while the
set of all programs are countable. This means that it is impossible to map programs to real numbers,
and there will always exist real numbers which a program cannot know.

7 A little counting

1. What is the number of ways to have k strictly positive numbers that add up to n?

(
n −1

k −1

)
=

(
n −1

n −k

)

Answer:
(n−1

k−1

)= (n−1
n−k

)
This is a classic stars and bars problem. Since we have k strictly positive numbers x1, x2, . . . , xk , we have

x1 +x2 +·· ·+xk = n

(y1 +1)+ (y2 +1)+·· ·+ (yk +1) = n

y1 + y2 +·· ·+ yk = n −k

Here, each xi = yi +1 to remove the strictly positive constraint. Using stars and bars directly now, we have a
total of n −k stars and k −1 bars, giving us a total of

(n−k+k−1
k−1

)= (n−1
k−1

)= (n−1
n−k

)
ways to define these yi ’s, each

corresponding to an xi .

2. What is the number of ways to produce a sequence of numbers 0 < x1 < x2 < ·· · < xk < n?

(
n −1

k

)

Answer: In order for all xi ’s to be between 0 and n exclusive, we have a total of n −1 possibilities, and we
cannot have any duplicates—with any selection of k distinct numbers, we have exactly one arrangement of
xi ’s that fit the constraints.

This means that this is equivalent to choosing k items out of n −1 total, where order does not matter and with
no replacement:

(n−1
k

)
.
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3. What is the number of ways to produce a sequence of numbers 0 ≤ x1 ≤ x2 ≤ ·· · ≤ xk < n?

(
k +n −1

n −1

)
=

(
k +n −1

k

)

Answer: Similar to the previous part, we can model this as choosing k items from n total, where order does
not matter but with replacement. Note that order still does not matter here because any selection corresponds
to a unique arrangement that fits the constraints.

This is then just stars and bars—we have k stars and n −1 bars, giving us a total of
(k+n−1

k

)= (k+n−1
n−1

)
ways of

selecting our xi ’s.

4. What is the number of poker hands that have at least 1 ace? (Recall that a poker hand is 5 cards from a 52 card
deck.)

(
52

5

)
−

(
48

5

)

Answer: It is easier in this case to count the complement of our desired event, i.e. the number of poker hands
that have no aces.

This quantity is just
(48

5

)
, as we can remove the 4 aces from the deck, then choose our 5 cards for our hand. We

now have to subtract this from the total number of poker hands,
(52

5

)
, to arrive at our final answer of

(52
5

)− (48
5

)
.

8 Probability

1. Consider rolling two six sided fair dice.

(a) What is the probability that exactly one die is 6?

10

36

Answer: There are two cases: the first die is a 6, and the second is not, or the second die is a 6, and the
first is not. Each case has 5 possible outcomes, giving us 10 possibilities where one die is a 6, out of a
total of 36.

(b) What is the probability that the sum of the two dice is 6?

5

36

Answer: For each value of the first die from 1 through 5 inclusive, there is exactly one value for the
second die that makes their sum equal to 6. This means that there are 5 possibilities where the sum of
the pair of dice is 6, out of a total of 36.

(c) What is the probability that the sum is 6 given that at least one die is at least 3?
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5

32

Answer: In all outcomes where the sum is 6, at least one die is at least 3—this means that the condition
just restricts our sample space. The outcomes that are excluded by the condition are outcomes where
both dice are less than 3; there are 4 outcomes that fit this (both dice must be either 1 or 2), meaning we
now have 32 outcomes in the conditioned sample space.

(d) The event of rolling a 6 on the first die is independent of the event that the dice sum to 7.

 True ⃝ False

Answer: The probability that we roll a 6 on the first die is 1
6 , and the probability that the dice sum to 7 is

also 1
6 (no matter what the first die is, the second die has exactly one possible outcome that makes it

sum to 7). Together, the probability that we roll a 6 on the first die and the dice sum to 7 is 1
36 ; we must

get the pair (6,1).

Since P[roll 6 on first die∩ sum to 7] = 1
36 = 1

6 · 1
6 = P[roll 6 on first die] ·P[sum to 7], the two events are

in fact independent.

In another perspective, we can also calculate the probability that we roll a 6 on the first die given that the
dice sum to 7. Under this condition, there is only one pair of dice rolls such that the first die is a 6, out of
a total of 6 possible pairs. This means that P[roll 6 on first die | sum to 7] = 1

6 =P[roll 6 on first die], and
as such the two events are independent.

(e) The event of rolling at least one 6 is independent of the event that the dice sum to 7.

⃝ True  False

Answer: The probability of rolling at least one 6 is 11
36 , since we can have (6,?) or (?,6), and subtracting

the one overcounting of (6,6).

The probability of rolling at least one 6 given that the dice sum to 7 is 1
3 , since the only possibilities are

(1,6), (6,1), (2,5), (5,2), (3,4), or (4,3).

As such, we’ve shown that P[at least one 6] ̸=P[at least one 6 | sum to 7], so the two events are not inde-
pendent.

In another perspective, we can also calculate the probability of rolling at least one 6 and that the dice
sum to 7. Out of a total of 36 pairs of rolls, there are only two pairs that sum to 7 that have at least one six,
i.e. (1,6) and (6,1). This gives a probability of 2

36 = 1
18 , which means that

P[at least one 6]P[sum to 7] = 11

36
· 1

6
̸= 2

36
=P[at least one 6∩ sum to 7],

and as such the two events are not independent.

2. Flip a coin until you repeat either heads or tails 2020 times. We will derive the probability that the first coin is
the same as the last coin in the entire sequence of flips.

(a) If the process stops after 2020 tosses, what is the probability that the first and last coin are the same?

1

Answer: If we have stopped after 2020 tosses, all 2020 tosses must have been the same, meaning the
first and last coin are always the same.

12
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(b) If the process stops after 2021 tosses, what is the probability that the first and last coin are the same?

0

Answer: If we have stopped after 2021 tosses, the last 2020 tosses must have been the same, and the first
toss must have been different—otherwise, we would have stopped after 2020 tosses. This means that the
first and last toss will always be different.

(c) What is the probability that the first coin is the same as the last coin in the entire sequence of flips?

22019

22020 −1

Answer: For ease, let p be the probability that the first and last flips are the same.

Without loss of generality, suppose the first flip was heads (the same reasoning holds if we assumed the
first flip was tails).

Looking at the first 2020 flips, the probability that all of the first 2020 flips are heads is 1
22019 (as we

assumed the first flip is heads, and we want 2019 more heads). Equivalently, the probability that we do
not get 2020 heads in a row in the first 2020 flips is 1− 1

22019 .

In the case that we do not end after the first 2020 flips, i.e. we flipped tails somewhere in middle, let’s
focus on the moment in which we flip that tails. Since each flip is independent of any previous flips,
we can think of this moment as if we just started flipping coins, and our first flip was a tails—we’ve
essentially just reset our counter.

At this point, now that we’ve broken our streak of heads, what’s the new probability of the last flip being
heads? We’re right back where we started in the first place, except starting with tails, so the probability
that the last flip is also a tails (whenever we stop) is again p. Hence, the probability that the last flip is a
heads is 1−p (to match our true first flip).

Written out formally, with the total probability rule we have

P[first = last]︸ ︷︷ ︸
p

=P[
first = last | 2020 flips

]︸ ︷︷ ︸
1

P
[
2020 flips

]︸ ︷︷ ︸
1

22019

+P[
first = last | > 2020 flips

]︸ ︷︷ ︸
(1−p)

P
[> 2020 flips

]︸ ︷︷ ︸(
1− 1

22019

) .

If we now solve this resulting equation for p, we have

p = 1

22019 + (1−p)

(
1− 1

22019

)
p =

�
��
1

22019 +1−
�

��
1

22019 −p + p

22019

2p − p

22019 = 1

p

(
2− 1

22019

)
= 1

p = 1

2− 1
22019

= 1
22020

22019 − 1
22019

= 22019

22020 −1

3. Which of the following are always true?

13
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(a) E[10X ] = 10E[X ]

 True ⃝ False

Answer: This is linearity of expectation (that is, E[aX +b] = aE[X ]+b), which always holds.

(b) E
[

X 2
]= E[X ]2

⃝ True  False

Answer: This is not true in general. In fact, if this were true, then we must have E
[

X 2
]−E[X ]2 = Var(X ) =

0.

(c) E
[
(X −Y )2

]= E[X 2
]+E[Y 2

]−2E[X ]E[Y ]

⃝ True  False

Answer: If we were to expand the LHS and use linearity on each expanded term, we have

E
[
(X −Y )2]= E[X 2 −2X Y +Y 2]= E[X 2]+E[Y 2]−2E[X Y ].

We cannot simplify this any further with linearity. The problem statement has additionally assumed
E[X Y ] = E[X ]E[Y ], which is not always true—it is only true if X and Y are independent.

(d) Var(X +Y ) = Var(X )+Var(Y )

⃝ True  False

Answer: This identity is only true if X and Y are independent.

If X and Y are dependent, this may not be true—consider the simple case where X = Y ; Var(X +Y ) =
Var(2X ) = 4Var(X ), while Var(X )+Var(Y ) = 2Var(X ), which are not equal.

9 Marbles

Consider two bags of marbles; the “majority red” bag has 6 red marbles and 4 blue marbles, and the “majority blue”
bag has 3 red marbles and 7 blue marbles, and each bag is chosen with probability 1

2 .

1. If you draw a blue marble where each marble in the bag is equally likely, what is the probability that the bag is
the “majority blue” bag?

7

11

Answer: Let A be the event that we chose the “majority blue’ bag, and let B be the event that we get a blue
marble.

Note that since each bag can be chosen with equal probability, each marble in each bag is chosen with equal
probability, and there are an equal number of marbles in each bag, any given marble among the two bags is
also equally likely to be chosen. This means that P[B ] = 11

20 because there are a total of 11 blue marbles out of
20 total marbles.

We also have P[A∩B ] =P[B | A]P[A] = 7
10 · 1

2 = 7
20 , or in another perspective, 7 of the blue marbles are from

the “majority blue” bag, out of the total of 20 marbles.

This then means that

P[A | B ] = P[A∩B ]

P[B ]
=

( 7
20

)( 11
20

) = 7

11
.

14
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2. What is the probability that the next marble is blue?

6

11

Answer: Let N be the event that the next marble we choose is blue. For ease, let us also define C = A | B (that
is, the event that we drew from the “majority blue” bag given that we drew a blue marble), and let C = A | B
(that is, the event that we drew from the “majority red” bag given that we drew a blue marble). Note that
P[C ] = 7

11 from the previous question, and C = 1−C = 4
11 as well.

With the Law of Total Probability, we have two cases: either we have drawn the first blue marble from the
“majority blue” bag (i.e. A happened), or we have drawn the first blue marble from the “majority red” bag (i.e.
A happened). In either case, the bag we drew from now has 9 marbles, and one less blue marble:

P[N ] =P[N |C ]P[C ]+P
[

N |C
]
P
[
C

]
= 6

9
· 7

11
+ 3

9
· 4

11

= 54

99
= 6

11

10 Variance, covariance, tail bounds

1. If E[X ] = 4, and E[Y ] = 5, and E[X Y ] = E[X ]E[Y ], what is Cov(X ,Y )?

0

Answer: Using the definition of covariance, we have Cov(X ,Y ) = E[X Y ]−E[X ]E[Y ]; knowing that E[X Y ] =
E[X ]E[Y ] means the RHS is 0.

2. A student earns one standard deviation above the mean on both exam 1 and exam 2. We define random
variables X and Y as the score of a randomly chosen student on exam 1 and exam 2 respectively. If Var(X ) = 1,
Var(Y ) = 1, and Cov(X ,Y ) = 0.5, how many standard deviations above the mean did the student get on the
sum of her two scores? (Recall Var(X +Y ) = Var(X )+Var(Y )+2Cov(X ,Y ).)

2p
3

Answer: Since the student scored one standard deviation above the mean on both exams, and both standard
deviations are

p
1 = 1, the student scored 1 point above the mean on both exams. This means that the student

also scored 2 points above the mean on the sum of the two scores.

Computing the variance of the sum of the scores, we have Var(X +Y ) = Var(X )+Var(Y )+ 2Cov(X ,Y ) =
1+1+2 ·0.5 = 3, utilizing the hint given. This means that the standard deviation of the sum of the two scores
is
p

3.

To see how many standard deviations above the mean the student scored on the sum, we divide the raw point
score by the standard deviation—this means that they scored 2p

3
standard deviations above the mean.
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3. For a random variable X , where X ≥−1, E[X ] = 5, and E
[

X 2
]= 26, give an upper bound on P[X ≥ 6]. (It should

be tight with respect to the appropriate inequality.)

6

7

Answer: Using Markov’s Inequality on Y = X +1, we have

P[X ≥ 6] =P[Y −1 ≥ 6] =P[Y ≥ 7] ≤ E[Y ]

7
.

We also have E[Y ] = E[X +1] = E[X ]+1 = 5+1 = 6, so the upper bound is 6
7 .

If we were to try this with Chebyshev’s Inequality, we have

P[X ≥ 6] =P[X −5 ≥ 1] ≤P[|X −5| ≥ 1] ≤ Var(X )

1
= Var(X ).

Since Var(X ) = E[X 2
]−E[X ]2 = 26−52 = 1, Chebyshev’s gives us a quite useless upper bound of 1. In this case,

Markov’s Inequality is the best choice of an upper bound.

4. For a random variable X , where E[X ] = 5 and E
[

X 2
]= 26, give an upper bound on P[X ≥ 9]. (It should be tight

with respect to the appropriate inequality.)

1

16

Answer: Using Chebyshev’s Inequality, we have

P[X ≥ 9] =P[X −5 ≥ 4] ≥P[|X −5| ≥ 4] ≤ Var(X )

16
.

Since we know that Var(X ) = E[X 2
]−E[X ]2 = 26−52 = 26−25 = 1, we have an upper bound of 1

16 .

We cannot use Markov’s Inequality here, because we are not guaranteed that X is nonnegative; thus, Cheby-
shev’s Inequality is the only concentration inequality we can use.

5. Let X be a random variable such that E[X ] = 10 and Var(X ) = σ2. Let Y = X1+X2+···+Xn
n where Xi are i.i.d

samples of X . For what value of n is P[|Y −E[X ]| ≥ 1] ≤ 0.05? (Provide a bound that is as tight as possible using
Chebyshev’s inequality.)

n ≥ 20σ2

Answer: Firstly, note that

E[Y ] = E
[

X1 +X2 +·· ·+Xn

n

]
= 1

n

n∑
i=1

E[Xi ] = E[X ].

This means that we can use Chebyshev’s directly on the desired probability:

P[|Y −E[X ]| ≥ 1] =P[|Y −E[Y ]| ≥ 1] ≤ Var(Y )

1
= Var(Y ).

16
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We know that

Var(Y ) = Var

(
X1 +X2 +·· ·+Xn

n

)
= 1

n2

n∑
i=1

Var(Xi ) = σ2

n
.

This means that the probability is upper bounded by σ2

n . We want this probability to be upper bounded by

0.05, so we want to find n such that σ2

n ≤ 0.05. Rearranging, we have n ≥ 20σ2.

11 Continuous: warmup

Consider a continuous random variable X with pdf f (x). (Answers below are a number or possibly expressions that
involve the random variable and E[·] or Var(·)

1. What is
∫ ∞
−∞ f (x) dx?

1

Answer: This follows by the definition of a valid probability density function; the integral over all possible
values must equal 1.

2. What is
∫ ∞
−∞ x f (x) dx?

E[X ]

Answer: This follows by the definition of the expected value of a random variable.

3. What is
∫ ∞
−∞ x2 f (x) dx?

E
[

X 2]

Answer: This follows by the Law of the Unconscious Statistician (LOTUS), which says that for a continuous
RV X with pdf f (x),

E
[
g (X )

]= ∫ ∞

−∞
g (x) f (x) dx.

Here, g (x) = x2.

4. Consider Y = 2X where X ∼ Exp(λ), Y ∼ Exp(λ′). What is λ′?

λ

2

Answer: A property of exponential distributions is that the rate scales inversely with a constant coefficient.
Specifically, if X ∼ Exp(λ), aX ∼ Exp(λa ). In this case, Y ∼ Exp(λ2 ), meaning λ′ = λ

2 .

17



CS 70 FINAL SOLUTIONS (REWRITTEN) FALL 2020

We can formally prove this by looking at the CDF:

P[aX ≤ t ] =P
[

X ≤ t

a

]
= 1−e−λ

t
a = 1−e−

λ
a t .

The last expression is the CDF of an Exp(λa ) RV.

5. Recall that for choosing a random point in a unit square, the pdf is f (x, y) = 1 in the unit square and zero
elsewhere. What is the pdf for choosing a uniform point in a 2×2 square? (Answer need only state the pdf
inside the 2×2 square as outside it is zero.

1

4

Answer: Since we’re multiplying the area by 4, we should divide the density by 4 to keep the integral of the
pdf constant at 1. This means the pdf becomes a constant 1

4 .

More formally, we can derive this pdf by solving for its constant density (set to an unknown c):

1 =
∫ 2

0

∫ 2

0
f (x, y) dx dy =

∫ 2

0

∫ 2

0
c dx dy = 4c =⇒ c = 1

4
.

12 Distributions: continuous and discrete

1. Given X ,Y ∼ Bin(n, p), what is the variance of X +Y ?

2np(1−p)

Answer: The question was missing the assumption that X and Y are independent; the intended solution
utilizes the fact that X +Y ∼ Bin(2n, p) if X and Y are independent. The reasoning is that each RV describes n
independent trials, so together, they describe 2n independent trials, each with probability p of success. This
means that the variance of X +Y is 2np(1−p).

However, the question statement as is does not have that assumption, so we must also add

2Cov(X ,Y ) = 2(E[X Y ]−E[X ]E[Y ]) = 2
(
E[X Y ]− (np)2),

giving an answer of 2np(1−p)+2
(
E[X Y ]− (np)2

)
.

2. What is E[min(X ,Y , Z )] where X ,Y , Z ∼ Geom(p)?

1

1− (1−p)3

Answer: This question was also missing the assumption that X , Y , and Z are independent; otherwise, we
cannot arrive at a nice answer.

18
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One thing to note is that

P[min(X ,Y , Z ) ≥ k] =P[X ≥ k ∩Y ≥ k ∩Z ≥ k]

=P[X ≥ k]P[Y ≥ k]P[Z ≥ k]

=
(
(1−p)k−1

)3 = (1−p)3(k−1)

Using the tail sum formula for expectation, we have

E[min(X ,Y , Z )] =
∞∑

k=1
P[min(X ,Y , Z ) ≥ k] =

∞∑
k=1

(1−p)3(k−1) =
∞∑

k=0
(1−p)3k ,

where the last equality comes from changing the summation indices. This is an infinite geometric series with
common ratio r = (1−p)3, and initial term of a0 = 1, so the sum is a0

1−r = 1
1−(1−p)3 .

3. What is E[min(X ,Y , Z )] where X ,Y , Z ∼ Exp(λ)?

1

3λ

Answer: This question was also missing the assumption that X , Y , and Z are independent; otherwise, we
cannot arrive at a nice answer.

Following a similar initial thought process for the previous question, we have

P[min(X ,Y , Z ) ≥ t ] =P[X ≥ t ∩Y ≥ t ∩Z ≥ t ]

=P[X ≥ t ]P[Y ≥ t ]P[Z ≥ t ]

=
(
e−λt

)3 = e−3λt

One thing that is different in this case is that the last expression is the CCDF of an Exp(3λ) RV. This means that
we can immediately find the mean to be 1

3λ .

4. Let Z ∼ Exp(λ) and Y = ⌈Z ⌉, where ⌈x⌉ is the lowest integer of value at least x. Note that the variable
Y ∼ Geom(p). What is the value of p in terms of λ?

1−e−λ

Answer: In order for ⌈Z ⌉ = k, we must have k −1 < Z ≤ k. This means that we have

P[⌈Z ⌉ = k] =P[k −1 < Z ≤ k]

=P[Z > k −1]−P[Z > k]

= e−λ(k−1) −e−λk

= e−λ(k−1) −e−λ(k−1)e−λ

= (e−λ)k−1
(
1−e−λ

)
This is a geometric distribution with parameter 1−e−λ.
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Alternatively, one can arrive at the PDF through one integral:

P[k −1 < Z ≤ k] =
∫ k

k−1
fZ (t ) dt

=
∫ k

k−1
λe−λt dt

= (−e−λt )
∣∣∣k

k−1

= e−λ(k−1) −e−λk

This is the same intermediate result from prior, and we can simplify in the same way.

5. Let Y ∼ Exp(λ). What is the conditional probability density function of Y if Y ∈ [i , i +1] for a natural number
i ?

A.
λe−λx

e−λi
B.

λe−λx

1−e−λ
C.

λe−λ(x−i )

1−e−λ
D.

λe−λ(x−i )

(1−e−λ)i

C

Answer: λe−λ(x−i )

1−e−λ

Notice that by the memoryless property, fY |Y ∈[i ,i+1](y) = fY |Y ∈[0,1](y − i ) for y ∈ [i , i +1]; it doesn’t matter if we
start observing at time 0 or time i if we know that we have to wait at most another 1 unit of time.

This means that we can rewrite this conditional pdf as

fY |Y ∈[0,1](y − i ) = fY (y − i )

P[Y ∈ [0,1]]
= λe−λ(y−i )

1−e−λ
.

The answer choice just has y replaced with x.

6. For X ∼ Geom(p) and Y ∼ Pois(X ), what is E[Y ]?

1

p

Answer: Using the law of total expectation, we can condition on all possible values of X :

E[Y ] =
∞∑

x=1
E[Y | X = x]P[X = x]

=
∞∑

x=1
E[Y ∼ Pois(x)]P[X = x]

=
∞∑

x=1
xP[X = x]

= E[X ] = 1

p

In the third line, we used the fact that the expected value of a Pois(λ) RV is just λ; after conditioning on the
value of X , the parameter is now a constant. After making that substitution, we notice that the summation
just becomes the expected value of X , which we know to be 1

p .
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7. Consider a random variable X = 2lnY where Y ∼ Uniform[0,1].

(a) What is the range of X ? (The range is where the pdf of X is positive.)

[−∞,0]

Answer: Since Y can only take on values in [0,1], it suffices to determine the range of 2lnY on the
interval Y ∈ [0,1]. At Y = 0, we know that 2lnY →−∞, and at Y = 1, we know that 2lnY = 0. Since lnY
is an increasing function, we know that the range of X is [−∞,0].

(b) What is the pdf of X on the range defined above? (Hint: P[X ∈ [x, x + dx]] =P[
Y ∈ [ex/2,e(x+dx)/2]

]
and

ex+dx ≈ ex (1+ dx).)

1

2
ex/2

Answer: It’s actually easiest to work with the cdf rather than the pdf of X here; since we know that
X = 2lnY , we can plug this into the cdf probability and rearrange:

P[X ≤ x] =P[2 lnY ≤ x]

=P[
Y ≤ ex/2]

= ex/2

The last simplification is because the cdf of Y ∼ Uniform[0,1] is FY (y) = y . Taking the derivative of the
cdf of X , we get a pdf of d

dx

[
ex/2

]= 1
2 ex/2.

An alternate solution (which the hint guides you toward) is to work directly with the pdfs. Remember
that when working with pdfs as probabilities, we need to include a factor of dx in order to convert these
densities into true probabilities.

Using the hint, we have that

fX (x) dx =P[X ∈ [x, x + dx]] =P
[

Y ∈
[

ex/2,e(x+dx)/2
]]

=P
[

Y ∈
[

ex/2,ex/2+dx/2
]]

≈P
[

Y ∈
[

ex/2,ex/2
(
1+ 1

2
dx

)]]
= ex/2

(
1+ 1

2
dx

)
−ex/2

= 1

2
ex/2 dx

Cancelling out the dx from both sides, we get that fX (x) = 1
2 ex/2.

13 Continuous: triangle

Consider a right equilateral triangle of side lengths 1, 1, and
p

2. Given a random point in the triangle, we define the
random variable X as the distance from the hypotenuse as shown in the figure below.
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X

1. What is the joint density function f (x, y) for points inside the triangle? (Again, the point is chosen uniformly
inside the entire triangle. Ignore the shading in the figure for now.)

2

Answer: We want the integral of the density function over the triangle to be equal to 1. Since the point is
chosen uniformly, we have a constant density function to solve for:

1 =
Ï

A
f (x, y) dx dy =

Ï
A

c dx dy = c
Ï

A
dx dy =⇒ c = 1

area
= 2.

Here, we used the fact that the area of the triangle is 1
2 ·1 ·1 = 1

2 .

2. What is the area of the shaded triangle in terms of X ? (Hint: the range of X is
[

0,
p

2
2

]
.)

(1−x
p

2)2

2

Answer: The best way to derive this is to draw it out:

X

X X

X
p

2

The main thing to notice here is that since the triangle is a 45–45–90 triangle, we have the same ratios in the
smaller triangle in the bottom right (or top left) of the figure. This allows us to calculate the side length of the
shaded triangle as 1−X

p
2.

Now that we know the side length of the shaded triangle, we can directly find the area to be 1
2

(
1−X

p
2
)2

.

3. What is the cdf of X for the range x ∈
[

0,
p

2
2

]
?
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1−
(
1−x

p
2
)2

Answer: The cdf is the probability P[X ≤ x]; it describes the probability that the point lands at most x units
away from the hypotenuse. This is just the complement of the shaded area found in the previous part (scaled
by the density). Hence, the probability P[X > x] = 2 · (shaded area) = (1−x

p
2)2, and our desired probability is

1− (1−x
p

2)2.

More formally, to explain more on why we multiply by 2 (i.e. the density), we have

P[X > x] =
Ï

T
f (x, y) dx dy =

Ï
T

2 dx dy = 2
Ï

T
dx dy = 2 · (shaded area),

where T denotes the region of the shaded triangle that we’re integrating over.

4. What is the pdf of X in the range x ∈
[

0,
p

2
2

]
?

2
p

2
(
1−x

p
2
)

Answer: The pdf is the derivative of the cdf, so

d

dx

[
1− (1−x

p
2)2

]
=−2(1−x

p
2) ·−p2 = 2

p
2
(
1−x

p
2
)
.

14 Markov Chain

Consider the following Markov chain.

1

2

3a

1−a 1

1

1. For what value of a does the chain have a unique invariant distribution but does not always converge to it?

a = 0

Answer: The chain will always have a unique invariant distribution if it is irreducible, but if it is periodic, then
not all initial distributions will converge to the invariant distribution.

In order to make the chain periodic, we need a = 0 to eliminate the self loop. The resulting chain has period 3.

2. For a = 1
2 , what is the stationary distribution?

π(1) = 1

2
, π(2) =π(3) = 1

4
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Answer: The transition matrix is

P =
 1

2
1
2 0

0 0 1
1 0 0

 .

The system π=πP along with the restriction on the sum gives us the system of equations

π(1) = 1

2
π(1)+π(3)

π(2) = 1

2
π(1)

π(3) =π(2)

1 =π(1)+π(2)+π(3)

We know that π(3) =π(2) = 1
2π(1), so substituting this into the last equation, we have

1 =π(1)+π(2)+π(3) =π(1)+ 1

2
π(1)+ 1

2
π(1) = 2π(1) =⇒ π(1) = 1

2
.

This means that π(2) =π(3) = 1
4 as well.

15 Small Faces

Given a planar graph with minimum degree 3 with e edges, v vertices, and f faces, we will prove there is a face of
length at most 5. (The length of a face is the number of edges along it.)

1. What is the sum of the face lengths,
∑ f

i=1 si , where si is the size of face i , in terms of e?

2e

Answer: The key here is to notice that each edge is counted twice; each edge is adjacent to two different faces.
This means that summing up all of the face lengths will double count every edge, giving us a total value of 2e.

2. Give a lower bound on e in terms of v . (Hint: the minimum degree is 3.)

e ≥ 3

2
v

Answer: Recall the handshaking lemma, which says that 2e =∑
v deg(v). Since we know that the minimum

degree is 3, the sum of all degrees must be at least 3v , meaning 2e ≥ 3v =⇒ e ≥ 3
2 v .

3. Prove that there is a face of size at most 5. (Recall Euler’s formula is v + f = e +2.)

Answer: Suppose for contradiction that there does not exist any face of length at most 5. This means that
every single face has length at least 6. Computing the sum of all face lengths and using the result from the first
part, we have

2e =
f∑

i=1
si ≥ 6 f .

This means that 2e ≥ 6 f =⇒ f ≤ 1
3 e. Using Euler’s formula, we arrive at

v + f = e +2 =⇒ v + 1

3
e ≥ e +2 =⇒ v ≥ 2

3
e +2 =⇒ 2

3
e ≤ v −2.

But we’ve already arrived at the conclusion that e ≥ 3
2 v =⇒ 2

3 e ≥ v , which is a contradiction.
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16 Balls and Bins

Consider placing 5n balls into 3n bins uniformly at random. (Careful, the constants in front of the n’s are important.)

1. What is the expected number of empty bins?

3n

(
1− 1

3n

)5n

Answer: Let X represent the number of empty bins, and Xi represent whether the i th bin is empty or not. We
then have

E[X ] =
3n∑

i=1
E[Xi ] = 3nP[Xi = 1]

by linearity of expectation and since Xi is an indicator. The probability that the i th bin is empty is
(
1− 1

3n

)5n
;

we have 5n total balls, each of which has a probability 1− 1
3n of not landing in bin i .

This means that our final answer is 3n
(
1− 1

3n

)5n
.

2. What is the variance of the number of empty bins?

3n

(
1− 1

3n

)5n

+2

(
3n

2

)(
1− 2

3n

)5n

−
(
3n

(
1− 1

3n

)5n)2

Answer: With the same variables as in the previous part, the variance is

Var(X ) = E
[(

3n∑
i=1

Xi

)2]
−E[X ]2

=
3n∑

i=1
E
[

X 2
i

]+2
3n∑

i< j
E
[

Xi X j
]−(

3n

(
1− 1

3n

)5n)2

Since Xi is an indicator, E
[

X 2
i

]
is the same as E[Xi ] =P[Xi = 1], as it can only be 1 or 0. Similarly, the only case

where Xi X j = 1 is if both Xi = 1 and X j = 1.

=
3n∑

i=1
P[Xi = 1]+2

3n∑
i< j

P
[

Xi = 1∩X j = 1
]−(

3n

(
1− 1

3n

)5n)2

The first probability is the same as what we calculated in the previous part; there are 5n balls, each of which has
a 1− 1

3n probability of not landing in bin i . The second probability P
[

Xi = 1∩X j = 1
]

is calculated similarly;

we have 5n balls, each of which has a 1− 2
3n probability of not landing in either bin i or bin j .

= 3n

(
1− 1

3n

)5n

+2

(
3n

2

)(
1− 2

3n

)5n

−
(
3n

(
1− 1

3n

)5n)2

The factor of
(3n

2

)
is because we have

(3n
2

)
different combinations of Xi X j where i < j ; we multiply by 2 to

account for the cases where i > j .

3. What is the expected number of non-empty bins?
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3n

(
1−

(
1− 1

3n

)5n)

Answer: The number of non-empty bins is 3n − X , where X is the number of empty bins as in the first
part—each bin is either empty or non-empty. This means that we have

E[3n −X ] = 3n −E[X ] = 3n −3n

(
1− 1

3n

)5n

= 3n

(
1−

(
1− 1

3n

)5n)
.

4. What is the variance of the number of non-empty bins (in terms of the answer for part (1), (2), and/or (3).)

Same as (2)

Answer: Similar to the previous part, the number of non-empty bins is 3n − X , so Var(3n − X ) = Var(X )
because 3n is a constant and inverting an RV does not change the variance.

17 Sequential Dice

Consider rolling a die repeatedly until one gets two 6’s in a row.

1. Draw a three state Markov chain where the states are labelled A, B , and C . Your chain should have a state C
which is the “goal”: the previous two rolls were a 6. State A should indicate that one has not rolled any die or
that the previous die is not 6.

Answer:

A

B

C5
6

1
6

5
6

1
6

5
6

1
6

Here, state A represents the time in which we have not started rolling, or if we have made no progress toward
two 6’s in a row. State B represents the time in which we have just rolled a 6, and state C represents the time in
which we have just rolled two 6’s.

Transitioning from A to B or from B to C or from C to C has probability 1
6 , as we need to roll a 6. Otherwise,

all other transitions have a probability of 5
6 , for every other value.

Alternatively, it is also perfectly valid to stop at state C , and have no other connections from state C ; the
experiment stops when we reach the goal of two 6’s in a row. Drawing the chain like this does not affect the
calculations in the next parts.

A

B

C5
6

1
6

5
6

1
6

1
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2. What is the expected number of rolls to roll two 6’s in a row?

42

Answer: Let β(i ) represent E[rolls until two 6’s | at state i ]. This means that we have the system of equations:

β(A) = 1+ 1

6
β(B)+ 5

6
β(A)

β(B) = 1+ 5

6
β(A)+ 1

6
β(C )

β(C ) = 0

Plugging in the equation for β(B) into the equation for β(A), and eliminating β(C ), we have

β(A) = 1+ 1

6

(
1+ 5

6
β(A)

)
+ 5

6
β(A)

= 1+ 1

6
+ 5

36
β(A)+ 5

6
β(A)

1

36
β(A) = 7

6
β(A) = 42

3. What is the probability of rolling two 6’s in a row prior to rolling a 5? (Hint: add a state to your previous Markov
Chain and do a computation.)

1

8

Answer: Suppose we add a state D , representing the time in which we have rolled a 5. We can transition to
state D from state A and state B with probability 1

6 , meaning the transitions that had probability 5
6 prior now

have probability 4
6 = 2

3 :

A

B

C

D

2
3

1
6

2
3

1
6

5
6

1
6

1
6

1
6

1

Now, let α(i ) represent P[C before D | at state i ]. This means that we have the system of equations:

α(A) = 2

3
α(A)+ 1

6
α(B)+ 1

6
α(D)

α(B) = 2

3
α(A)+ 1

6
α(C )+ 1

6
α(D)

α(C ) = 1

α(D) = 0
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Keeping in mind the values of α(C ) and α(D), we can plug in the expression for α(B) into the equation for
α(A):

α(A) = 2

3
α(A)+ 1

6

(
2

3
α(A)+ 1

6

)
= 2

3
α(A)+ 1

9
α(A)+ 1

36
2

9
α(A) = 1

36

α(A) = 1

8

As an aside, we also could have drew the chain with connections continuing on from state D (shown on the
left), or we could have drew the chain with no connections from state C (or any similar combinations):

A

B

C

D

2
3

1
6

2
3

1
6

5
6

1
6

1
6

1
6

1
6

5
6

A

B

C

D

2
3

1
6

2
3

1
6

1
1
6

1
6

1

Both chains are valid, and do not affect the calculations above; all we care about is whether we hit state D or
hit state C first. Once we reach any one of the two states for the first time, we can safely stop the experiment,
since at that point we’d know whether we rolled a 5 first or whether we rolled two 6’s first.

18 Bayes Rule

A doctor has information that 80% of the sick children in a neighborhood have the flu and the other 20% of sick
children have measles. The further knows that the probability of a rash with measles is 0.95, and that the probability
of a rash with flu is 0.10. If a sick child has a rash, what is the probability the child has measles? (Show your work
here, and use the box for your final answer.)

Answer: 19
27

Let M denote the event that a child has measles, let F denote the event that a child has the flue, and let R denote the
event that a child has a rash.

Converting the sentences into probabilities, we have

P[F ] = 0.8 P[R | M ] = 0.95

P[M ] = 0.2 P[R | F ] = 0.1

Our goal is to find P[M | R]; we can use Bayes’ rule with the Law of Total Probability to switch the condition and
evaluate the probability:

P[M | R] = P[R | M ]P[M ]

P[R | M ]P[M ]+P[R | F ]P[F ]

= 0.95 ·0.2

0.95 ·0.2+0.1 ·0.8

= 0.19

0.19+0.08
= 0.19

0.27
= 19

27
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19 Close enough!

Given a circle (dartboard) of radius 1, choose two points at random on the dartboard uniformly, and let X and Y
define the distance to the center. What is the probability that |X −Y | ≤ δ? (Recall that the pdf of both variables is
f (x) = 2x for x < 1.)

Answer: 1
3δ

4 −2δ2 + 8
3δ

It is easiest to look at this on a graph:

δ

δ

X

Y

X and Y are defined only on the unit square, and the probability we are trying to find is P[|X −Y | ≤ δ], or the
shaded area above. While we could integrate the joint pdf over this area, it is easiest to calculate the complement
probability—that is, we can integrate over the two unshaded triangles.

Another thing to notice is that we only have to integrate over one triangle, as we can multiply by two (because
the joint pdf is symmetric about y = x). Taking the lower right triangle and noting that our joint pdf is f (x, y) =
f (x) · f (y) = 4x y , our integral would be

2
∫ 1−δ

0

∫ 1

y+δ
4x y dx dy = 2

∫ 1−δ

0

(
2x2 y

)∣∣1
y+δ dy

= 2
∫ 1−δ

0
2y −2y

(
y +δ

)2 dy

= 4
∫ 1−δ

0
y − y3 −2δy2 −δ2 y dy

= 4

(
1

2
y2 − 1

4
y4 − 2δ

3
y3 − δ2

2
y2

)∣∣∣∣1−δ

0

= 2(1−δ)2 − (1−δ)4 − 8δ

3
(1−δ)3 −2δ2(1−δ)2

The calculations after this point are just expanding and simplifying the expression. The calculation is left here as a
possible way of simplifying (it is quite tedious).

= (1−δ)2
(
2− (1−δ)2 − 8δ

3
(1−δ)−2δ2

)
= (1−δ)2

(
2−1+2δ−δ2 − 8

3
δ+ 8

3
δ2 −2δ2

)
= (

1−2δ+δ2)(1− 2

3
δ− 1

3
δ2

)
=−1

3
δ4 − 2

3
δ3 +δ2 + 2

3
δ3 + 4

3
δ2 −2δ− 1

3
δ2 − 2

3
δ+1

=−1

3
δ4 +2δ2 − 8

3
δ+1

We still need to take the complement of this result, as this integral is for the two unshaded triangles. Taking the
complement, we have our final answer of 1

3δ
4 −2δ2 + 8

3δ.
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20 Puzzler

Consider the following game on an n ×m grid, with two cooperating players. A key is hidden under a grid square
and on each square there is a single coin that is either heads or tails. Player 1 knows the key location and must flip
exactly one coin.

Player 2 should observe the pattern of heads and tails and produce the key location.

To reiterate, from an arbitrary initial setup of heads and tails on the grid, player 1 should flip exactly one coin to
make a setup where player 2 can determine the location of the hidden key.

1. What is a strategy for the players to win on a 2×1 grid? (Hint: Think about 2x + y (mod 2) for x, y ∈ {0,1} and
think of heads as 1 and 0 as tails.)

Answer: Let x = 1 denote that the left square is heads, and y = 1 denote that the right square is heads. Further,
let z = 2x + y (mod 2); this means that z can either be 0 or 1. Suppose the players agree beforehand that z = 1
means that the key is in the left square, and z = 0 means that the key is in the right square.

The key insight here is that changing x does not change the value of 2x + y (mod 2), whereas changing y flips
z. This means that if the key is already in the correct location based on the initial arrangement of the coins,
player 1 can just flip the left coin (i.e. flip x), leaving the value of z unchanged. If the key is in the incorrect
location, then player 1 can flip the right coin (i.e. flip y), flipping the value of z and allowing player 2 to find
the right location.

2. What is a strategy for the players to win on a 2k ×2k grid? (Hint: use induction to find the column and row of
the coin to flip. (Notice 2k = 2×2k−1.)

Answer: See the following video for an explanation better than anything I could give: https://youtu.
be/as7Gkm7Y7h4 (if you just want the solution, you can skip to 22:20 in the video: https://youtu.be/
as7Gkm7Y7h4?t=1340). Regardless, I’ll summarize the contents of the video here.

The essence of it is that we can use something similar to a Hamming code to encode the position of the keys,
using parities of smaller subgrids. Identifying the flipped coin is just the same process of error identification
for any typical Hamming code.

Specifically, we label each square with a binary number, from 0 to 2k+1. We then calculate the parities by
looking at all squares with a “1” in the first binary digit, then all squares with a “1” in the second binary digit,
etc., for a total of k +1 parity calculations. (In particular, the parity is 1 if there are an odd number of heads,
and the parity is 0 if there are an even number of heads.)

Putting these parities together in one k +1 digit binary number, player 1’s strategy is to match this parity
number with the location of the key by flipping exactly one coin.

This is always possible, since flipping any coin is the same as taking the XOR of the coin’s label with the parity
number (to find the location of the coin to flip, player 1 can just take the XOR of the parity number with the
key’s label).

After player 1 flips the coin, we know that the parity number matches the key location—this means that player
2 just needs to calculate the parities. The resulting parity number will be the location of the key.

One can more mathematically prove that this strategy holds through induction; we can look at just the first
binary digit and use the inductive hypothesis to show that we can identify the coin to flip (for player 1) and
the key’s location (for player 2) if we narrow down our choices to just one half of the board (via the parity of
each half of the board).

As a followup, 3Blue1Brown made a video explaining why a strategy only exists for boards that have a total of
2k squares for some k; I highly recommend it if you’re curious: https://youtu.be/wTJI_WuZSwE
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