
CS 70 FINAL SOLUTIONS (REWRITTEN) SPRING 2019

(Rewritten by Alec Li, as the original solutions have mistakes and unclear answers.)

1 True or False?

For each of the questions below, answer TRUE or FALSE. No need to justify your answer.

Please fill in the appropriate bubble!

1. (P =⇒ (R ∧¬R)) =⇒ ¬P

 True ⃝ False

Answer: This is the form of a proof by contradiction of ¬P . Specifically, if by assuming P is true, we get a
contradiction (i.e. R ∧¬R ≡ F ), then it must be the case that P is false (i.e. ¬P is true).

2. Let Z be the integers, and P (i ) be a predicate on integers;

P (0)∧ ((∃i ∈Z)P (i )∧P (i +1)) =⇒ (∀i ∈Z)((i ≥ 0) =⇒ P (i )).

⃝ True  False

Answer: Just because a particular i makes P (i )∧P (i +1) true does not mean that P (i ) is true for every i .

For example, suppose we have a P such that P (0), P (4), and P (5) are all true, and false everywhere else. This
predicate satisfies the LHS but not the RHS; it is true for some P (i ) and P (i +1), but is not true for all P (i ).

3. Let R be the real numbers; (∀x, y ∈R)
(
(x < y) =⇒ (

(∃z ∈R)(x < z < y)
))

 True ⃝ False

Answer: This statement claims that there always exists another real number between any pair of real numbers,
which is true.

4. LetQ be the rational numbers; (∀x, y ∈R)
(
(x < y) =⇒ (

(∃z ∈R)(x < z < y)
))

 True ⃝ False

Answer: This statement claims that there always exists another rational number between any pair of rational
numbers, which is true.

5. Any stable pairing that is optimal for one man is optimal for all men.

⃝ True  False

Answer: Consider a stable matching instance constructed by taking the union of two separate instances. In
particular, we take the union of the two sets of men, and the union of the two sets of women, and extend each
preference list, where the people in the other instance are disliked (i.e. appended to the end).

Here, the only stable pairings will pair people within their original instances. Now, consider the male-pessimal
pairing in one instance and the male-optimal pairing in the other instance; together, these pairings are stable,
as there is no rogue couple between the two different instances. Further, this pairing is optimal for half of the
men, and pessimal for the other half.

As an example, consider the following, where x, y , z, and w are men;

x 1 > 2 > 3 > 4
y 2 > 1 > 3 > 4
z 3 > 4 > 1 > 2
w 4 > 3 > 1 > 2

1 y > x > z > w
2 x > y > z > w
3 w > z > x > y
4 z > w > x > y

.
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Here, {x, y,1,2} are people in one stable matching instance, and {z, w,3,4} are the people in the other stable
matching instance. Notice how everyone prefers those in different instances the least.

Now, consider the stable pairing (x,1), (y,2), (w,3), (z,4). This is male optimal in the first instance (i.e. the
instance involving {x, y,1,2}), but male pessimal in the second instance (i.e. the instance involving {z, w,3,4}).

In particular, although this pairing is optimal for x, it is not optimal for z (as z would rather be paired with 3,
and can be paired with 3 in another stable pairing).

6. Any graph with no triangles is two colorable.

⃝ True  False

Answer: Consider a single cycle of length 5. Since this is a cycle of odd length, it is not 2-colorable; it also
does not contain any triangles, as it is a single cycle.

7. There is a graph with average degree 2 that does not have a cycle.

⃝ True  False

Answer: Consider the connected components. Since the average degree of the entire graph is 2, there must
be a connected component of average degree at least 2.

By the handshaking lemma, the sum of all degrees in a component must be twice the number of edges, i.e.∑
v∈V deg(v) = 2e; this means the average degree is 1

n

∑
v∈V deg(v) = 2

n e ≥ 2 for this connected component.
This implies that e ≥ n; in a tree, the number of edges must be exactly n − 1, meaning this connected
component is connected but not a tree, i.e. it contains a cycle.

8. The length of any Eulerian tour of a graph is even.

⃝ True  False

Answer: Consider a triangle; the Eulerian tour of the graph has length 3. In particular, the length of a Eulerian
tour of a graph must be the total number of edges, which has no guarantee of being even. Only the degrees of
all vertices must be even in order for a Eulerian tour to exist.

9. There is a program that takes a program P and input x and number of steps, s and returns YES if and only if P
run on x halts in s steps.

 True ⃝ False

Answer: One can simulate the program P run on x for s steps.

10. If one can write a program that solves a problem P using the halting problem as a subroutine, then the
problem P is undecidable.

⃝ True  False

Answer: This is the wrong direction for the reduction; in order to show that a problem P is undecidable, one
must solve the halting problem, using a program solving P as a subroutine.

In particular, P can be very easy to solve, and one can still use the halting problem as a subroutine.

11. There is a bijection between the powerset of rational numbers and the real numbers. (The powerset of a set S
is the set of all subsets of S).

 True ⃝ False

Answer: The powerset of an infinitely countable set is uncountable. In particular, it is sufficient to show that
the powerset of the natural numbers is uncountable. Using Cantor diagonalization, we can list out all possible
sets of natural numbers by assigning a 1 or a 0 to each natural number for each set; we write a 1 if the number
is included in the set, and a 0 if it is not included.
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This diagonalization would look like the following:

0 1 2 3 4 · · ·
S1 1 1 1 1 1 · · ·
S2 1 0 1 0 1 · · ·
S3 0 0 0 0 0 · · ·
S4 0 1 1 0 1 · · ·
S5 1 1 1 0 0 · · ·
...

...
...

...
...

...
. . .

If by contradiction we assume this list is complete, we can construct a subset of the natural numbers not in
the list by taking the diagonal entries and flip their values, i.e. if we wrote a 1, we do not include the number,
and if we wrote a 0, we do include the number in the set. Since this new set differs from each listed set in at
most one location, it does not appear in the list, and thus the list is incomplete.

This shows that the powerset of the natural numbers is uncountable; since the set of rational numbers is also
countable, there exists a bijection between the rational numbers and the natural numbers, and thus also a
bijection between the powerset of rational numbers and the powerset of the natural numbers. This suggests
that the powerset of the rational numbers is also uncountable.

12. If P[A∪B ] =P[A]+P[B ] then A and B are independent.

⃝ True  False

Answer: A and B are independent if and only if P[A∩B ] =P[A]×P[B ].

If A and B have nonzero probability, this implies that P[A∩B ] = 0 (by inclusion-exclusion, as P[A∪B ] =
P[A]+P[B ]−P[A∩B ]), which is not equal to P[A]×P[B ] > 0. This means that A and B cannot be independent.

In particular, this statement is only true if A or B have zero probability.

13. Given n balls being thrown into n bins, the event “the first bin is empty” and the event “the second bin is
empty” are independent.

⃝ True  False

Answer: If the first bin is empty, the second bin is less likely to be empty, as we have the same number of balls
to be thrown in fewer bins. As such, the two events are not independent.

2 Quick Proof

Prove that
∑n

i=1
1

i (i+1) = n
n+1 .

Answer: There are two possible approaches; one with induction, and one with telescoping series (through partial
fractions).

Solution 1 (induction): We proceed by induction on n.

Base case (n = 1): For n = 1, we have 1
1(1+1) = 1

2 = 1
1+1 , and the claim holds.

Inductive Hypothesis: Suppose the claim holds for some n = k; that is,
∑k

i=1
1

i (i+1) = k
k+1 .
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Inductive step: Notice that

k∑
i=1

1

i (i +1)
= k

k +1
(IH)

k∑
i=1

1

i (i +1)
+ 1

(k +1)(k +2)
= k

k +1
+ 1

(k +1)(k +2)

k+1∑
i=1

1

i (i +1)
= k(k +2)

(k +1)(k +2)
+ 1

(k +1)(k +2)

= 1+k(k +2)

(k +1)(k +2)

= k2 +2k +1

(k +1)(k +2)

= (k +1)(k +1)

(k +1)(k +2)

= k +1

k +2
= (k +1)

(k +1)+1

This is exactly the claim for n = k +1, and as such the claim holds for n = k +1.

By the principles of induction, the claim must then hold for all n ≥ 1.

Solution 2 (telescoping series): Notice that

1

i (i +1)
= 1

i
− 1

i +1
.

This can be derived through partial fractions, solving for A and B in 1
i (i+1) = A

i + B
i+1 .

Expanding the summation, we have

n∑
i=1

1

i (i +1)
=

n∑
i=1

(
1

i
− 1

i +1

)
= 1

1
− 1

2
+ 1

2
− 1

3
+ 1

3
− 1

4
+·· ·+ 1

n
− 1

n +1
.

Everything cancels out in the middle to leave only

n∑
i=1

1

i (i +1)
= 1− 1

n +1
= n

n +1
,

as desired.

3 Short Answer: Discrete Math

1. What is the number of faces in a planar drawing of a planar graph with n vertices where every vertex has
degree 3?

n

2
+2

Answer: By the handshaking lemma, the sum of all degrees is exactly twice the number of edges; that is,∑
u∈V deg(u) = 2e.

Since every vertex has degree three, the LHS becomes 3n, i.e. three times the number of vertices; this means
that 2e = 3n =⇒ e = 3n

2 . By Euler’s formula, we have n + f = e +2 (here n is the number of vertices), and
plugging in our value of e, we have

n + f = 3n

2
+2 =⇒ f = n

2
+2.
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2. Given a graph G = (V ,E ) with k connected components, what is the minimum number of edges one needs to
add to ensure that the resulting graph is connected?

k −1

Answer: We can add edges between connected components, decreasing the number of connected compo-
nents by 1 each time. To get to just one connected component from an original k connected components, we
need to add k −1 such edges.

3. The hypercube graph for dimension d has an Eulerian tour when d = (mod 2).

0

Answer: In order for a graph to have a Eulerian tour, all vertices must have even degree. This means that we
must have d ≡ 2 (mod 2)

4. For a dimension d hypercube with a Eulerian tour of length L and a Hamiltonian cycle of length ℓ, what is
L/ℓ?

d

2

Answer: A hypercube of dimension d has a total of d ·2d−1 edges, and 2d vertices.

The length of a Eulerian tour will be the total number of edges, and the length of a Hamiltonian cycle will be
the total number of vertices. This means that L = d ·2d−1 and ℓ= 2d . The ratio is thus

L

ℓ
= d ·2d−1

2d
= d

2
.

5. What is the minimum number of odd degree vertices in a connected acyclic graph?

2

Answer: There must be at least one odd degree vertex (if all vertices had degree at least 2, then the graph
must be cyclic; see question 1.7), and there must be an even number of odd degree vertices (the handshaking
lemma implies that the total degree must be even, as it is exactly 2e).

This means that the minimum number of odd degree vertices in a connected acyclic graph must be 2.

6. What is 210 (mod 11)?
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1

Answer: FLT says that ap−1 ≡ 1 (mod p), and here we have a = 2 and p = 11.

7. For distinct primes p, q,r and N = pqr , how many elements of {0,1, . . . , N −1} are relatively prime to N ?

(p −1)(q −1)(r −1)

Answer: We can use inclusion-exclusion here, through complementary counting. We can find the number of
elements not relatively prime to N , i.e. the number of elements that share at least one prime factor with N .
The set of such elements is exactly the union of the multiples of p, multiples of q , and multiples of r .

There are a total of qr multiples of p (i.e. {0, p,2p, . . . , (qr −1)p}, and the next multiple of p is pqr = N , which
is not in the set). Similarly, there are a total of pr multiples of q , and a total of pq multiples of r .

However, just adding qr +pr +pq overcounts the elements that are multiples of two of the primes; we need
to subtract these overcounts. In a similar manner as prior, there are a total of r multiples of pq , a total of q
multiples of pr , and a total of p multiples of qr .

Lastly, we have now subtracted too much; multiples of pqr (i.e. 0) is subtracted too many times, and is now
not counted at all. This means we need to add 1 at the very end to compensate.

In total, we have a total of qr +pr +pq −p −q − r +1 elements that are not relatively prime with N . Taking
the complement, we have a total of

pqr −qr −pr −pq +p +q + r −1 = (p −1)(q −1)(r −1)

elements in {0,1, . . . , N −1} relatively prime to N .

An alternate solution is to consider numbers mod p, mod q , and mod r . Suppose we look at a number x. In
order for x to be relatively prime to N , it must not be equal to 0 (mod p), it must not be equal to 0 (mod q),
and it must not be equal to 0 (mod r ). This means that it has p−1 choices for its value (mod p), q−1 choices
for its value (mod q), and r −1 choices for its value (mod r ).

Once we’ve chosen the residues mod p, q , and r , CRT tells us that this system of modular equations gives a
unique solution for x ∈ {0,1, . . . , N −1}. This means that any combination of residues gives a unique element,
and there are a total of (p −1)(q −1)(r −1) such combinations.

8. Consider N and the set S = {x ∈ {0, . . . , N −1} : gcd(x, N ) = 1}, where k = |S|. For a ∈ S, we define T = {ax
(mod n) : x ∈ S}. What is |T |? Answer may include N and k.

k

Answer: Since a is relatively prime to N (i.e. a ∈ S, and as such gcd(a, N ) = 1), f (x) = ax (mod N ) is a
bijection.

To see why, we can show that it is both injective and surjective. To show that f is injective, we need to show
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that f (x) = f (y) =⇒ x ≡ y (mod N ):

f (x) = f (y) =⇒ ax ≡ ay (mod N )

=⇒ x ≡ a−1ay (mod N )

=⇒ x ≡ y (mod N )

Here, we know that a−1 (mod N ) exists, since gcd(a, N ) = 1.

To show that f is surjective, we need to show that for all y ∈ S, there exists some x such that f (x) = y . In
particular, we have x = a−1 y (mod N ), since f (a−1 y) = aa−1 y ≡ y (mod N ).

Now that we’ve shown that f is bijective, T = f (S) must contain exactly the same number of elements as S,
and as such |T | = |S| = k.

9. For a prime p, what is a positive integer x that guarantees ax ≡ 1 (mod p2) for all a relatively prime to p?
Answer may include p.

p(p −1)

Answer: This follows from a proof similar to that of the proof of FLT.

Consider the function f (x) = ax (mod p2). Since gcd(a, p) = 1, it must be the case that gcd(a, p2) = 1, as p2

has only p as a prime factor.

Consider the set S = {x ∈ {0,1, . . . , p2 −1} : gcd(x, p2) = 1}, i.e. the set of integers between 0 and p2 −1 that are
relatively prime to p2. In a similar fashion as in the previous part, we can see that f : S → S is bijective.

Therefore, the set S and the set f (S) contain exactly the same numbers, and the products of the elements in
each set must also be equal. That is,∏

x∈S
x ≡ ∏

x∈S
ax = a|S| ∏

x∈S
x (mod p2).

Since
∏

x∈S x contains no factors of p, its value is relatively prime to p2, and an inverse exists. This means that
the above equation implies that a|S| ≡ 1 (mod p2).

To find |S|, we can see that there are p multiples of p (i.e. {0, p, . . . , (p −1)p}) that we must subtract from the
total of p2 possible values, giving us |S| = p2 −p = p(p −1).

10. For distinct primes p, q,r , what is a(p−1)(q−1)(r−1) (mod pqr ), where a is relatively prime to pqr ? Answer may
include p, q,r .

1 (mod pqr )

Answer: By FLT, we have

a(p−1)(q−1)(r−1) = (
ap−1)(q−1)(r−1) ≡ 1 (mod p)

a(p−1)(q−1)(r−1) = (
aq−1)(p−1)(r−1) ≡ 1 (mod q)

a(p−1)(q−1)(r−1) = (
ar−1)(p−1)(q−1) ≡ 1 (mod r )

By CRT, we have a(p−1)(q−1)(r−1) ≡ 1 (mod pqr ) as the unique solution to the system (mod pqr ).
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11. Jonathan wants to tell Emaan how many chicken nuggets he ate today, which we will call c. He doesn’t
want the world to know, so he encrypts it with Emaan’s public key (N ,e), which yields the ciphertext x. Jerry
intercepts the message, and wants to make it look like Jonathan actually ate 5 times as many chicken nuggets.
What message should she send to Emaan? Answer may include x, N , and e. You may not include c.

5e · x (mod N )

Answer: We want to send some value y such that y ≡ (5c)e (mod N ), i.e. y is the ciphertext for the message
5c. Simplifying, we get y ≡ 5d cd ≡ 5e x (mod N ).

For the following parts consider two non-zero polynomials P (x) and Q(x) of degree d over GF(p) (modulo p),
with rp roots and rq roots respectively.

12. What is the maximum number of roots for the polynomial P (x)Q(x)? Answer may include d , rp , and rq . (Your
answer should be achievable for any valid d , rp and rq .)

min(p,rp + rq )

Answer: The roots of P (x)Q(x) must also be roots of P (x) or Q(x), which yields rp + rq as an upper bound.
However, since we are working in GF(p), any polynomial can only have at most p roots, whereas rp + rq can
exceed this value. Taking the minimum gives min(p,rp + rq ) as the maximum number of roots for P (x)Q(x).

13. What is the minimum number of roots for the polynomial P (x)Q(x)? Answer may include d , rp , and rq .

max(rp ,rq )

Answer: To get the least amount of roots possible in P (x)Q(x), we want to have the maximum overlap between
the roots of P and the roots of Q. This means that the total number of roots in P (x)Q(x) must be the larger of
rp and rq , i.e. max(rp ,rq ).

14. Let S = {(x1, y1), . . . , (xn+2k , yn+2k )} be a set of n +2k points where the xi are distinct. If P (x) and Q(x) are
polynomials where P (xi ) = yi ) for at least n+k points in S and Q(x j ) = y j for at least n+k points in S, what is
the minimum number of points that P (x) and Q(x) must agree on in S? Answer may include n and k.

n

Answer: Between P (x) and Q(x), there are a total of 2n +2k points contained in S, but S only contains n +2k
points. This means that the overlap must be at least (2n +2k)− (n +2k) = n points.

This fact comes from error correction; specifically, from the derivation of why we need to send n +2k points
in order to protect against k general errors for a message of length n. In particular, we can show through
contradiction that if we have two distinct polynomials P (x) and Q(x) that pass through at least n +k of the
received points, they must have at least n points in common; since P and Q are of degree at most n +1, this
uniquely defines both P and Q, meaning they must not be distinct.
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15. Working over GF(5), describe a degree exactly 2 polynomial where P (1) = 1 and P (2) = 2.

c(x −1)(x −2)+x for any c ̸= 0

Answer: Notice that P (x)−x has roots at both x = 1 and x = 2, so we have P (x)−x = c(x −1)(x −2) for some
nonzero c. Here, c must be nonzero, otherwise this polynomial has degree 1.

16. Let P (x) be a degree d = n − 1 polynomial over GF(p) (p is prime) that contains all but ℓ ≤ k of n + 2k
points which are given. In this situation, recall that the Berlekamp–Welsh procedure can reconstruct P (x)
be assuming the existence of an error polynomial E(x) of degree exactly k and leading coefficient of 1, and a
polynomial Q(x) = P (x)E(x). How many possible pairs of Q(x) and E(x) are consistent with the Berlekamp–
Welsh procedure? Answer may include ℓ,k,d ,n, and p.

pk−ℓ

Answer: Here, Berlekamp–Welsh is run with the assumption that we are protecting against at most k general
errors. This means that the error polynomial is of degree k, with roots at the k errors; here, we have fewer
than k errors (specifically, only ℓ≤ k errors), so we have freedom in choosing the k −ℓ extra error locations.
Each extra error location has p choices under GF(p), so we have a total of pk−ℓ possible error polynomials,
each one of them associated with a different Q(x) = P (x)

E(x) to give the same P (x).

Put another way, E (x) must be of the form (x−e1)(x−e2) · · · (x−ek ), to identify the locations of the k errors. Of
these, only ℓ are true error locations, and the rest can vary freely. This means that the latter (x−eℓ+1) · · · (x−ek )
can be any polynomial, and there are a total of pk−ℓ ways to define these last few terms.

4 Short Answer: Counting

1. What is the number of ways to place n distinguishable balls into k distinguishable bins?

kn

Answer: Each of the n balls has k possibilities for which bin it should go in. This gives us kn possible ways to
place the n balls into k bins.

2. What is the number of ways to place n distinguishable balls into k distinguishable bins where no two balls are
placed in the same bin? You may assume that n ≤ k.

k !

(k −n)!

Answer: The first ball has k choices for the corresponding bin, the second ball has k −1 choices (as it can’t be
the same as the first), etc. This is equivalent to k !

(k−n)! .

3. What is the number of ways to divide d dollar bills among p people? Assume dollar bills are indistinguishable
and people are distinguishable.

9
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(
d +p −1

p −1

)
=

(
d +p −1

d

)

Answer: Using stars and bars, we have d stars (bills) and p −1 bars (p people). This gives us
(d+p−1

p−1

)= (d+p−1
d

)
ways to split the bills.

4. How many (x1, . . . , xk , y1, y2, . . . , yk ) are there such that all xi , yi are non-negative integers,
∑k

i=1 xi = n, and
yi ≤ xi for 1 ≤ i ≤ k? Answer may not include any summations.

(
n +2k −1

2k −1

)
=

(
n +2k −1

n

)

Answer: Here, while the equation
∑k

i=1 xi = n suggests that this is a stars and bars problem, we also want to
pick the yi ’s, which have the constraint yi ≤ xi for 1 ≤ i ≤ k. This constraint is difficult to deal with, since it
depends entirely on the value of xi .

Instead, notice that if we pick our yi ’s, the xi ’s can be defined entirely based on the distance between the
corresponding yi ’s. This difference can vary without bound, and does not depend on the value of the yi ’s.

Formally, we can define zi = xi − yi for each i ; this represents the distance between the xi ’s and yi ’s. Notice
that zi ≥ 0 and we have

k∑
i=1

xi −
k∑

i=1
yi +

k∑
i=1

yi =
k∑

i=1
zi +

k∑
i=1

yi = n.

The last summation sums 2k non-negative integers with no other constraints; this means that we can now
use stars and bars. We have n stars (i.e summing n 1’s) and 2k −1 bars (i.e. 2k variables to group the 1’s into),
giving us

(n+2k−1
2k−1

)= (n+2k−1
n

)
choices.

5 Short Answer: Probability

1. Given two tosses of a fair coin, what is P[heads on the second coin | at least one heads in the two tosses]?

2

3

Answer: With two tosses of a fair coin, H H , T H , HT , and T T are all equally likely. Out of these four outcomes,
three have heads: H H , T H , HT . Of these outcomes, exactly two have heads on the second coin.

2. Consider two events, A and B with P[A∪B ] = 2
3 , P[A] = 1

2 , P[B ] = 4
5 . What is P[A∩B ]?

11

20
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Answer: By inclusion-exclusion, we have

P[A∪B ] =P[A]+P[B ]−P[A∩B ]

3

4
= 1

2
+ 4

5
−P[A∩B ]

P[A∩B ] = 1

2
+ 4

5
− 3

4
= 11

20

3. Alice and Bob both try to climb a rope. Alice and Bob will get to the top of the rope with probability 1
3 and 1

4
respectively. Given that exactly one person got to the top, what is the probability that the person is Alice?

3

5

Answer: With Bayes’ rule, we have

P
[
Alice got to the top | exactly one person got to the top

]= P
[
Alice was the only one that got to the top

]
P
[
exactly one person got to the top

] .

Looking at the numerator, in order for Alice to be the only person to get to the top, Alice must have gotten to
the top and Bob must not have gotten to the top. This happens with probability 1

3 · 3
4 = 1

4 .

Looking at the denominator, there are two ways for exactly one person to get to the top: either only Alice got
to the top, or only Bob got to the top. This happens with probability 1

3 · 3
4 + 2

3 · 1
4 = 1

4 + 1
6 = 5

12 .

Plugging these in, we have

P
[
Alice got to the top | exactly one person got to the top

]= ( 1
4

)( 5
12

) = 3

5
.

4. Given X ∼ Geom(p), what is P
[

X = i | X > j
]
? Assume i > j .

p(1−p)(i− j−1)

Answer: Given that X > j , we know that we’ve already had j failed trials. This means that we have i − j trials
left, and of these trials, we must have i − j −1 failures followed by one success. This occurs with probability
p(1−p)(i− j−1).

Formally, the memoryless property gives that P
[

X = i | X > j
]= P[

X = i − j
]
; in particular, the first j failed

trials do not change the probabilities of the next i − j trials. This probability is what we just computed above.

5. Given independent X ,Y ∼ Bin(n, p), what is P[X +Y = i ]?

(
2n

i

)
p i (1−p)2n−i

Answer: Since X and Y are independent, we can imagine that we have a total of 2n trials, each with probability
p. X +Y is the total number of successful trials among all of these trials. This means that X +Y ∼ Bin(2n, p),

11
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and

P[X +Y = i ] =
(

2n

i

)
p i (1−p)2n−i .

6. Consider a random variable X where E
[

X 4
]= 5. Give as good upper bound on P[X ≥ 5] as you can.

1

125

Answer: We have

P[X ≥ 5] ≤P[
X 4 ≥ 54]≤ E

[
X 4

]
54 = 5

54 = 1

125
.

We know that this is the best upper bound we can give, since the following random variable

X =
{

5 w.p. 1
125

0 w.p. 124
125

has expectation E
[

X 4
]= 54 · 1

125 = 5 and P[X ≥ 5] = 1
125 .

6 Concepts through balls in bins

Consider throwing n balls into n bins uniformly at random. Let X be the number of balls in the first bin.

1. What is the expected value of X ?

1

Answer: Let Xi be the indicator that ball i lands into the first bin. With linearity of expectation, we have

X =
n∑

i=1
Xi =⇒ E[X ] =

n∑
i=1
E[Xi ].

For any given ball, it has a 1
n probability of landing in the first bin, so E[Xi ] = 1

n . This means that we have

E[X ] =
n∑

i=1
E[Xi ] =

n∑
i=1

1

n
= 1.

2. Use Markov’s inequality to give an upper bound on P[X ≥ k].

1

k

Answer: In the previous part, we found that E[X ] = 1, meaning we have

P[X ≥ k] ≤ E[X ]

k
= 1

k
.

12
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3. What is the variance of X ?

1− 1

n

Answer: Similar to the first part, suppose Xi is the indicator that ball i lands in the first bin. This means we
have X = ∑n

i=1 Xi . Further, each Xi is independent from the others, as the balls do not affect one another.

Since the variance of the indicator is Var(Xi ) = 1
n

(
1− 1

n

)
, we have

Var(X ) =
n∑

i=1
Var(Xi ) =

n∑
i=1

1

n

(
1− 1

n

)
= 1− 1

n
.

4. Use Chebyshev’s inequality to give an upper bound on P[X ≥ k].

1− 1
n

(k −1)2

Answer: From the previous part, we found that Var(X ) = 1− 1
n , and in the first part, we found that E[X ] = 1.

Chebyshev’s inequality gives

P[X ≥ k] =P[X −E[X ] ≥ k −E[X ]]

≤P[|X −E[X ]| ≥ k −E[X ]]

=P[|X −1| ≥ k −1]

≤ Var(X )

(k −1)2

= 1− 1
n

(k −1)2

5. Now let Y be the number of balls in the second bin. What is the joint distribution of X , Y , i.e. what is
P
[

X = i ,Y = j
]
?

(
n

i

)(
n − i

j

)(
1

n

)i+ j (
1− 2

n

)n−i− j

Answer: We want to compute the probability that we have exactly i balls in the first bin and exactly j balls in
the second bin.

We have
(n

i

)
ways to choose the balls to go into the first bin. After choosing these i balls, we have n − i balls

left, of which we need to choose j to go into the second bin; this gives
(n−i

j

)
ways to choose the balls to go into

the second bin.

Now that we know the balls that go into the first and second bins, we need to find the probability that these
balls actually go into their desired bins. The probability that the selected i balls go into the first bin is 1

ni , and

the probability that the selected j balls go into the second bin is 1
n j . The probability that the n − i − j other

balls go into some other bin is
(
1− 2

n

)n−i− j
, since any given ball has a 1− 2

n probability of not going into either
the first or second bin.

13
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Multiplying all of these terms together, we have a
(n

i

)(n−i
j

)( 1
n

)i+ j (
1− 2

n

)n−i− j
probability of i balls falling in

the first bin and j balls falling in the second bin.

6. What is P
[

X = i | Y = j
]
?

(
n − j

i

)(
1

n −1

)i (n −2

n −1

)n−i− j

Answer: Given that Y = j , we know that j balls will be in the second bin. This means that we essentially have
j fewer balls and one fewer bin to consider when looking at X .

As such, out of n− j balls, we need i to land in the first bin, giving
(n− j

i

)
choices for these i balls. The probability

that exactly these i balls land in the first bin is
( 1

n−1

)i
, and the probability that the other n − i − j balls do not

land in the first bin is
( n−2

n−1

)n−i− j
.

Multiplying all of these terms together, we have a
(n− j

i

)( 1
n−1

)i ( n−2
n−1

)n−i− j
probability of i balls falling in the

first bin, given the j balls have fallen in the second bin.

7 Lots of chicken nuggets

We will model the number of customers going into Emaan’s and Jonathan’s favorite McDonalds within an hour as a
random Poisson variable, i.e. X ∼ Pois(λ).

1. Given that λ= 5, what is the probability that 5 people come in during the hour that Emaan and Jonathan are
eating chicken nuggets?

e−5 55

5!

Answer: We have X ∼ Pois(5), with

P[X = 5] = e−5 55

5!
.

2. If λ is unknown but is definitely at most 10, how many hours do Emaan and Jonathan need to be at McDonalds
to be able to construct a 95% confidence interval for λ that is of width 2. (You should use Chebyshev’s
inequality here. Recall for X ∼ Pois(λ) that Var(X ) =λ.)

200 hours

Answer: With X ∼ Pois(λ), we have E[X ] = Var(X ) =λ.

In each hour, we take a sample Xi for the number of people entering during the i th hour. The sample average
is Y = 1

n

∑n
i=1 Xi , with E[Y ] =λ and Var(Y ) = 1

n2

∑n
i=1 Var(Xi ) = λ

n , since each Xi are independent. This means
that our unbiased estimate of λ is Y itself.

Using Chebyshev’s inequality, we have

P[|Y −E[Y ]| ≥ k] ≤ Var(Y )

k
.

14
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Here, we have k = 1, since we want an interval width of 2. This means the RHS simplifies to λ
n . We want this

probability to be at most 1
20 , since we want 95% confidence that the true value of λ lands in this interval.

This means we have
λ

n
≤ 1

20
=⇒ n ≥ 20λ =⇒ n ≥ 200.

Here, the last inequality comes from the fact that λ is bounded above by 10; n = 200 is the smallest number of
hours to give the desired confidence no matter what the true λ is.

That’s a lot of time to eat chicken nuggets.

3. Solve the previous problem but now assume you can use the Central Limit Theorem. (Hint: You may want to
use the table in the back of the exam.)

40 hours, or
⌈

10 ·1.962⌉= 39 hours

Answer: By the central limit theorem, we can assume that Y = 1
n

∑n
i=1 Xi follows a normal distribution. In

particular,

E[Y ] = 1

n

n∑
i=1
E[Xi ] = 1

n

n∑
i=1

λ=λ

Var(Y ) = 1

n2

n∑
i=1

Var(Xi ) = 1

n2

n∑
i=1

λ= λ

n

This means that Y ∼N (λ, λn ), and standardizing Y , we have

Z = Y −λp
λ/n

∼N (0,1).

We want to find a w such that the probability P[−w ≤ Z ≤ w] = 0.95. That is, we want an interval centered
around the mean such that Z lies in the interval with 95% confidence. Looking at the standard normal table,
we can find that w ≈ 1.96.

This means that we have

0.95 ≈P
[
−1.96 ≤ Y −λp

λ/n
≤ 1.96

]
=P

[
−1.96 ·

p
λ/n ≤ Y −λ≤ 1.96 ·

p
λ/n

]
.

Here, the width of the confidence interval is in the units of Y , not in the units of Z , so we have to rewrite the
fraction to compute the width. After doing so, the width is the distance between the lower bound and upper
bound of the interval, or 2 ·1.96 ·pλ/n, which we want to be 2. Solving for n, we have

2 = 2 ·1.96 ·
√
λ

n

1 = 1.96 ·
√
λ

n

= 1.962 · λ
n

n = 1.962λ

In the worst case, we need to wait n = 1.962 ·10 ≈ 39 hours, since we know λ is at most 10.
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8 Not so dense density functions

1. Consider a continuous random variable whose probability density function is cx−3 for x ≥ 1, and 0 outside
this range. What is c?

2

Answer: We know that the density function integrates to 1. This means that we have∫ ∞

1
cx−3 dx = − c

2
x−2

∣∣∣∞
1

= c

2
.

Since we know this is also equal to 1, we have c = 2.

2. Consider random variables X , Y with joint density function f (x, y) = cx y for x, y ∈ [0,1], and 0 outside that
range.

(a) What is c?

4

Answer: We know that the joint density function integrates to 1. This means that we have∫ 1

0

∫ 1

0
cx y dx dy =

∫ 1

0

(
1

2
cx2 y

)∣∣∣∣1

x=0
dy =

∫ 1

0

1

2
c y dy =

(
1

4
c y2

)∣∣∣∣1

y=0
= c

4
.

Since we know that this is also equal to 1, we have c = 4.

(b) What is P
[|X −Y | ≤ 1

2

]
?

41

48

Answer: It is perhaps clearest to draw out the region |X −Y | ≤ 1
2 :

1
2

1
2

X

Y

The shaded area is the probability that we want to compute. Notice that it is also easier to compute the
complement of the probability, i.e. the two unshaded triangles. Since f (x, y) = 4x y is symmetric about
the line x = y , we need only integrate over one triangle, and multiply by two to get the final probability.
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In particular, the integral becomes

1−P
[
|X −Y | ≤ 1

2

]
= 2

∫ 1

1
2

∫ x− 1
2

0
4x y dy dx

= 2
∫ 1

1
2

(
2x y2)∣∣x− 1

2
y=0 dx

= 2
∫ 1

1
2

2x

(
x − 1

2

)2

dx

= 2
∫ 1

1
2

2x

(
x2 −x + 1

4

)
dx

= 2
∫ 1

1
2

2x3 −2x2 + 1

2
x dx

= 2

(
1

2
x4 − 2

3
x3 + 1

4
x2

)∣∣∣∣1

1
2

= 2

(
1

2
− 2

3
+ 1

4

)
−2

(
1

32
− 1

12
+ 1

16

)
= 2 · 1

12
−2 · 1

96
= 7

48

Taking the complement, we have P
[|X −Y | ≤ 1

2

]= 41
48 .

9 This is Absolutely Not Normal!

Consider a standard Gaussian random variable Z whose PDF is

∀z ∈R, fZ (z) = 1p
2π

e−z2/2.

Define another random variable X such that X = |Z |.
(a) Determine a reasonably simple expression for fX (x), the PDF of X . It may be helpful to draw a plot. Place

your final expression in the box below.

0 if x < 0√
2

π
e−x2/2 if x ≥ 0

Answer: We’ll provide two solutions. The first is probably more intuitive, but the second is also worth
mentioning.

Solution 1: It’s perhaps easiest to consider the CDF first, then differentiate to find the PDF. Notice that since
X = |Z |, X is always positive. This means that FX (x) = fX (x) = 0 for x < 0.

Looking at FX (x) for x ≥ 0, we have

FX (x) =P[X ≤ x]

=P[−x ≤ Z ≤ x]

=Φ(x)−Φ(−x)

= 2Φ(x)−1

17
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Here, we make use of the CDF of a standard Gaussian Φ(x). In particular, in the second to last line, Φ(x)
computes P[Z ≤ x] andΦ(−x) computes P[Z ≤−x]; subtracting the two gives the probability we want. Equiv-
alently,Φ(−x) = 1−Φ(x) by symmetry, which allows us to simplify to FX (x) = 2Φ(x)−1.

Differentiating, we have fX (x) = 2 fZ (x), where fZ (x) is the PDF of the standard normal. Putting everything
together (and substituting the value of fZ (x) in), we have

fX (x) =
{

0 if x < 0√
2
πe−x2/2 if x ≥ 0

Solution 2: Observe that

X =
{

Z if Z ≥ 0

−Z if Z < 0

By the Law of Total Probability, we can write the PDF for X as a mixture PDF ; in particular,

fX (x) = fX |Z≥0(x)P[Z ≥ 0]+ fX |Z<0(x)P[Z < 0].

Note that P[Z ≥ 0] = P[Z < 0] = 1
2 . Further, for x < 0, it must be the case that fX (x) = 0, since X is always

positive.

For x ≥ 0, we have

fX (x) = fX |Z≥0(x)

= fX ,Z≥0(x)

P[Z ≥ 0]
(def. conditional probability)

= fZ (x)

P[Z ≥ 0]
(X = Z if Z ≥ 0)

=
√

2

π
e−x2/2

Here, in the last equality we plug in P[Z ≥ 0] = 1
2 and fZ (x) = 1p

2π
e−z2/2 as given.

This means that

fX (x) =
{

0 if x < 0√
2
πe−x2/2 if x ≥ 0

(b) Determine a reasonably simple expression for E[X ], the mean of X . Place your final answer in the box below.

√
2

π

Answer: The mean of X is given by

E[X ] =
∫ ∞

0
x fX (x) dx

=
√

2

π

∫ ∞

0
xe−x2/2 dx

Letting u = x2/2, we have du = x dx; as such

=
√

2

π

∫ ∞

0
e−u du

=
√

2

π

18
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More specifically, the last integral evaluates to∫ ∞

0
e−u du = (−e−u)∣∣∞

0 = 0− (−1) = 1,

allowing us to eliminate it.

10 Joint Distributions with Kyle and Lara

Kyle and Lara arrive in Saint Petersburg randomly and independently, on any one of the first five (5) days of May
2019. Let K be the day that Kyle arrives, and let L be the day that Lara arrives. (Note that K and L will both be in
{1,2,3,4,5}).

Whoever arrives first must wait for the other to arrive before going on any kind of excursion in the city.

(a) Determine E[|K −L|], the expected wait time in days.

8

5

Answer: If Kyle and Lara arrive in Saint Petersburg randomly, then their PMFs are uniform over the set
{1,2,3,4,5}:

P[K = k] =
{

1
5 if k ∈ {1,2,3,4,5}

0 otherwise
P[L = ℓ] =

{
1
5 if k ∈ {1,2,3,4,5}

0 otherwise

Since K and L are independent, the joint PMF will be the uniform PMF over the range k ∈ {1,2,3,4,5} and
ℓ ∈ {1,2,3,4,5}:

P[K = k,L = ℓ] =
{

1
25 if k,ℓ ∈ {1,2,3,4,5}

0 otherwise

Computing the summation directly, we have

E[|K −L|] =
5∑

k=1

5∑
ℓ=1

P[K = k,L = ℓ] · |k −ℓ|

=
5∑

k=1

5∑
ℓ=1

(
1

25

)
|k −ℓ|

= 0

(
5

25

)
+1

(
8

25

)
+2

(
6

25

)
+3

(
4

25

)
+4

(
2

25

)
= 8

5

(b) Given that Kyle arrives at least a day later than Lara:

(i) Determine the conditional probability mass function for Kyle’s arrival day, pK |(K>L)(k).
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1/10 k = 2

2/10 k = 3

3/10 k = 4

4/10 k = 5

0 otherwise

Answer: Conditioning on the event K > L, we have the following restricted sample space:

1 2 3 4 5

1

2

3

4

5

K

L

The PMF is still uniform over these sample points, so the conditional PMF of K is the sum along each
column of the graph (i.e. along the ℓ direction). In particular,

P[K = k | K > L] =
∑
ℓ

P[K = k,L = l | K > L] =



1
10 k = 2
2

10 k = 3
3

10 k = 4
4

10 k = 5

0 otherwise

(ii) Provide a well-labeled plot of pK |(K>L)(k).

Answer: We have the following stem plot:
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1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

K

L

11 Markov Chains

Consider the two Markov Chains represented by the following state transition diagrams.

Markov Chain I

0

12

p

p

p

1
−p

1−p

1−
p

Markov Chain II

0

1

2

3

p

pp

p

1−
p

1−
p 1−

p

1−
p

(a) For Markov Chain I:

(i) Do the n-step transition probabilities—defined by ri j (n) =P[
Xn = j | X0 = i

]
—converge as n →∞?

 Converges ⃝ Does not converge

(ii) If so, determine the corresponding limit to which each transition probability converges, and explain
whether and why the limit depends on the initial state (i.e. the state at which the walker was stationed
initially). If you assert that the transitional probabilities do not converge, explain why no limit exists.

Answer: This chain is aperiodic since we can return to the same state in either 2 or 3 steps, so the n-step
transition probabilities converge.

By symmetry, the limiting values are 1
3 for all i and j ; all transitions are identical in structure. Because all

of the limiting values are the same, they do not depend on the initial state.

(b) For Markov Chain II:

(i) Do the n-step transition probabilities—defined by ri j (n) =P[
Xn = j | X0 = i

]
—converge as n →∞?

⃝ Converges  Does not converge

(ii) If so, determine the corresponding limit to which each transition probability converges, and explain
whether and why the limit depends on the initial state (i.e. the state at which the walker was stationed
initially). If you assert that the transitional probabilities do not converge, explain why no limit exists.
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Answer: This chain is periodic with period 2, so the transition probabilities do not converge. In particular,
we only ever return to the starting state after an even number of steps.

For example, r00(1) = 0, r00(2) ̸= 0, r00(3) = 0, r00(4) ̸= 0, etc. This sequence converges if and only if
r00(n) → 0; this is impossible though, as this means we must stay in states 1, 2, and 3 without ever going
to state 0—the symmetry of the Markov chain prevents this from occurring.

(c) Consider Markov Chain I above. Determine t∗0 , the mean recurrence time for state 0.

The mean recurrence time for a state s is the expected number of steps up to the first return to state s, starting
from state s. In other words,

t∗s = E[min(n ≥ 1 such that Xn = s) | X0 = s].

In particular,
t∗s = 1+∑

i
psi ti ,

where ti , which denotes the mean first passage time from state i to state s, is given by

ti = E[min(n ≥ 0 such that Xn = s) | X0 = i ].

(i) Write the system of equations that you would solve in the box below. Use t∗0 , t1, t2, and p.

t∗0 = 1+pt1 + (1−p)t2

t1 = 1+pt2

t2 = 1+ (1−p)t1

Answer: Writing the first step equations, we have

t∗0 = 1+pt1 + (1−p)t2

t1 = 1+pt2

t2 = 1+ (1−p)t1

In particular, if we start at state 0, we can either go to state 1 with probability p, or go to state 2 with
probability 1−p. In either case, we have taken an additional step, and we can recurse to compute the
value of t∗0 . For t1, we can either go to t2 with probability p, or go back to t0 with probability 1−p; in the
latter case, we take one step and we’re done, so no additional terms are needed. Similar reasoning holds
for t2.

(ii) Set p to 1
2 and write your final answer for the value of t∗0 in the box below.

3
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Answer: With p = 1
2 , we can solve the system of equations for t1 and t2 first to give

t1 = 1+ 1

2
t2

= 1+ 1

2

(
1+ 1

2
t1

)
= 3

2
+ 1

4
t1

3

4
t1 = 3

2

t1 = 3

2
· 4

3
= 2

This means t2 = 1+ 1
2 t1 = 1+1 = 2 as well, making

t∗0 = 1+ 1

2
t1 + 1

2
t2 = 1+1+1 = 3.

12 Derive Magic from a Uniform PDF

A random-number generator produces sample values of a continuous random variable U that is uniformly dis-
tributed between 0 and 1.

In this problem you’ll explore a method that uses the generated values of U to produce another random variable X
that follows a desired probability law distinct from the uniform.

(a) Let g : R→ [0,1] be a function that satisfies all the properties of a CDF. Furthermore, assume that g is invertible,
i.e. for every y ∈ (0,1) there exists a unique x ∈R such that g (x) = y .

Let random variable X be given by X = g−1(U ), where g−1 denotes the inverse of g . Prove that the CDF of X is
FX (x) = g (x).

Answer: The CDF of X is
FX (x) =P[X ≤ x] =P[

g−1(U ) ≤ x
]
.

Since g is strictly increasing, we know that g−1(U ) ≤ x if and only if g (g−1(U )) =U ≤ g (x). This means that

FX (x) =P[
g−1(U ) ≤ x

]=P[
U ≤ g (X )

]
.

Since U is a uniform between 0 and 1, P
[
U ≤ g (x)

]= g (x), and we can conclude that the CDF of X is FX (x) =
g (x), as desired.

As a side note, if we want to simulate a random variable X that obeys a desired CDF FX (x) that is invertible
over a range S = {x | 0 < g (x) < 1}, we can generate random variable U randomly distributed in [0,1), and let
X = F−1

X (U ).

(b) A random variable X follows a double-exponential PDF given by

fX (x) = λ

2
e−λ|x|,

for all x ∈R, where λ> 0 is a fixed parameter.

Using the random-number generator described above (which samples U ), we want to generate sample values
of X . Derive the explicit function that expresses X in terms of U . In other words, determine the expression on
the right-hand side of

X = g−1(U ).
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To do this, you must first determine the function g . From part (a) you know that g (x) = FX (x), so you must
first determine FX (x). It might help you to sketch the PDF of X first. Place your expression for g−1 in the box
below.


1

λ
ln(2U ) if 0 ≤U < 1

2
− 1

λ
ln(2−2U ) if

1

2
≤U < 1

Answer: We can first determine the CDF FX (x). For x < 0, we have fX (t ) = λ
2 eλx , so we can compute

FX (x) =P[X ≤ x]

=
∫ x

−∞
fX (t ) dt

= λ

2

∫ x

−∞
eλt dt

= λ

2

(
1

λ
eλt

)∣∣∣∣x

−∞

= λ

2
·
(

1

λ
eλt −0

)
= 1

2
eλt

For x ≥ 0, we have fX (t ) = λ
2 e−λx . Additionally, we know that FX (0) = 1

2 , so we can compute

FX (x) =P[X ≤ 0]+P[0 ≤ X ≤ x]

= 1

2
+

∫ x

0
fX (t ) dt

= 1

2
+ λ

2

∫ x

0
e−λt dt

= 1

2
+ λ

2

(
− 1

λ
e−λt

)∣∣∣∣x

0

= 1

2
+ λ

2
·
(
− 1

λ
e−λt + 1

λ

)
= 1

2
+ 1

2

(
1−e−λt

)
= 1− 1

2
e−λt

Together, we have

g (x) = FX (x) =
{

1
2 eλx if x < 0

1− 1
2 e−λx if x ≥ 0

To find X = g−1(U ), we can look at two different halves of the function; specifically, for 0 ≤U < 1
2 and 1

2 ≤U < 1
in the inverse function. These two halves correspond exactly with the two halves of the piecewise function we
defined earlier.
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In particular, for 0 ≤U < 1
2 , solving for X , we have

U = FX (X )

U = 1

2
eλX

2U = eλX

ln(2U ) =λX

1

λ
ln(2U ) = X

For 1
2 ≤U < 1, solving for X , we have

U = FX (X )

U = 1− 1

2
e−λX

1−U = 1

2
e−λX

2−2U = e−λX

ln(2−2U ) =−λX

− 1

λ
ln(2−2U ) = X

Together, we have

X = g−1(U ) =
{

1
λ ln(2U ) if 0 ≤U < 1

2

− 1
λ ln(2−2U ) if 1

2 ≤U < 1
.

25


	True or False?
	Quick Proof
	Short Answer: Discrete Math
	Short Answer: Counting
	Short Answer: Probability
	Concepts through balls in bins
	Lots of chicken nuggets
	Not so dense density functions
	This is Absolutely Not Normal!
	Joint Distributions with Kyle and Lara
	Markov Chains
	Derive Magic from a Uniform PDF

